Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1181133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637418

RESUMEN

Gastric ulcer (GU) is one of the most prevalent digestive diseases that seriously affects people's health. Previous studies have demonstrated the anti-GU effect of Ruda-6 (RD-6), a classic formulae of traditional Mongolian medicine. However, the underlying mechanism of RD-6 against GU remains elusive. Thus, we conducted an integrative approach of network analysis, RNA-seq, and in vivo validation experiment to elucidate the therapeutic mechanisms of RD-6 in preventing GU. A network analysis was performed to predict the potential targets of RD-6. Rats were pretreated with RD-6 at different doses for 21 days, followed by GU induction with indomethacin injection. The ulcer index and inhibition rates were calculated, and the levels of inflammatory related factors were determined by ELISA. The gastroprotective mechanism of RD-6 against ulceration was verified by RNA-seq and the key pathway was detected by in vivo validation. As the network analysis predicted, RD-6 exerts anti-GU effects by regulating 75 targets and 160 signaling pathways. Animal experiment results suggested that pretreatment with RD-6 significantly ameliorated the gastric mucosal injury and inflammatory response, as evidenced by a reduced ulcer index, decreased interleukin (IL)-1ß, IL-6, and IL-17 levels, and increased prostaglandin E2 (PGE2) levels in the GU model rats induced by indomethacin. RNA-seq data identified four potential hub genes that were primarily involved in the IL-17 signaling pathway. Furthermore, in vivo validation experiment showed that RD-6 inhibited the IL-17 signaling pathway by down-regulating the expression of IL17RA, proto-oncogene C-Fos (FOS), IL1B and prostaglandin-endoperoxide synthase 2 (PTGS2). Taken together, the present study provides evidence that RD-6 could effectively protect against indomethacin-induced GU, which might be attributed to suppressed inflammation. The IL-17 signaling pathway may be one of the crucial mechanisms that mediates the effect of RD-6.

2.
World J Diabetes ; 14(6): 846-861, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37383587

RESUMEN

BACKGROUND: Lomatogonium rotatum (LR) is traditionally used in Mongolian folk medicine as a hypoglycemic agent, but its evidence-based pharmacological effects and me-chanisms of action have not been fully elucidated. AIM: To emphasize the hypoglycemic action mechanism of LR in a type 2 diabetic rat model and examine potential biomarkers to obtain mechanistic understanding regarding serum metabolite modifications. METHODS: A high-fat, high-sugar diet and streptozotocin injection-induced type 2 diabetic rat model was established. The chemical composition of the LR was identified by high performance liquid chromatography. LR extract administrated as oral gavage at 0.5 g/kg, 2.5 g/kg, and 5 g/kg for 4 wk. Anti-diabetic effects of LR extract were evaluated based on histopathological examination as well as the measurement of blood glucose, insulin, glucagon-like peptide 1 (GLP-1), and lipid levels. Serum metabolites were analyzed using an untargeted metabolomics approach. RESULTS: According to a chemical analysis, swertiamarin, sweroside, hesperetin, coumarin, 1.7-dihydroxy-3,8-dimethoxyl xanthone, and 1-hydroxy-2,3,5 trimethoxanone are the principal active ingredients in LR. An anti-diabetic experiment revealed that the LR treatment significantly increased plasma insulin and GLP-1 levels while effectively lowering blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and oral glucose tolerance test compared to the model group. Furthermore, untargeted metabolomic analysis of serum samples detected 236 metabolites, among which 86 were differentially expressed between the model and the LR group. It was also found that LR considerably altered the levels of metabolites such as vitamin B6, mevalonate-5P, D-proline, L-lysine, and taurine, which are involved in the regulation of the vitamin B6 metabolic pathway, selenium amino acid metabolic pathway, pyrimidine metabolic pathway, and arginine and proline metabolic pathways. CONCLUSION: These findings indicated that LR may have a hypoglycemic impact and that its role may be related to changes in the serum metabolites and to facilitate the release of insulin and GLP-1, which lower blood glucose and lipid profiles.

3.
J Ethnopharmacol ; 314: 116545, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196816

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ruda-6 (RD-6), a typical traditional Mongolian medicine formulae consisting of 6 herbs, has been traditionally used in treating gastric disorders. Even though it has been shown to protect against gastric ulcers (GU) in animal models, the gut microbiome and serum metabololite-related mechanisms that prevent GU are not well understood. AIM OF THE STUDY: This study was conducted to evaluate the gastroprotective mechanism of RD-6 associated with the alteration of the gut microbiome and serum metabolic profiles in GU rats. MATERIALS AND METHODS: RD-6 (0.27, 1.35 and 2.7 g/kg) or ranitidine (40 mg/kg) were orally administered in rats for three weeks before the induction of gastric ulcer using indomethacin (30 mg/kg, single oral dose). The gastric ulcer index, ulcer area, H&E staining, and the levels of TNF-α, iNOS, MPO and MDA were quantified to evaluate the ulcer inhibitory effects of RD-6. Then, 16S rRNA gene sequencing combined with LC-MS metabolic profiling was performed to investigate the effect of RD-6 on the gut microbiota and serum metabolites in rats. Moreover, a spearman analysis was used to calculate the correlation coefficient between the different microbiota and the metabolites. RESULTS: RD-6 inhibited the gastric lesion damage caused by indomethacin in rats, decreased the ulcer index by 50.29% (p < 0.05), reduced the levels of TNF-α, iNOS, MDA and MPO in gastric tissue. Additionally, RD-6 reshaped the diversity and microbial composition, and reversed the reduced bacteria including [Eubacterium]_xylanophilum group, Sellimonas, Desulfovibrio, and UCG-009, and the increased bacteria Aquamicrobium caused by indomethacin induction. Furthermore, RD-6 regulated the levels of metabolites including amino acids and organic acids, and these affected metabolites were involved in taurine and hypotaurine metabolism and tryptophan metabolism. Spearman analysis revealed that the perturbed gut microbiota were closely related to the changes in differential serum metabolites. CONCLUSION: In view of the 16S rRNA gene sequencing and LC-MS metabolic results, the present study suggests the mechanism of RD-6 ameliorating GU via modulating intestinal microbiota and their metabolites.


Asunto(s)
Microbioma Gastrointestinal , Úlcera Gástrica , Ratas , Animales , Indometacina/toxicidad , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/metabolismo , Medicina Tradicional Mongoliana , Úlcera , Factor de Necrosis Tumoral alfa/farmacología , ARN Ribosómico 16S/genética , Metabolómica
4.
Medicina (Kaunas) ; 59(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37109624

RESUMEN

Background and Objectives: Aucklandiae Radix is a well-known medicinal herb that is often used to treat gastric ulcer, but its molecular mechanism of anti-ulcer action is poorly understood. This research aimed to reveal the potential active components, core targets, and mechanisms of Aucklandiae Radix in treating gastric ulcer by combining network pharmacology and animal experimentation. Materials and Methods: First, a network pharmacology strategy was used to predict the main components, candidate targets, and potential signaling pathways. Molecular docking was then used to confirm the binding affinity between the main components and primary targets. Finally, rats were treated with indomethacin 30 mg/kg to establish a gastric ulcer model. Aucklandiae Radix extract (0.15, 0.3, and 0.6 g/kg) was pre-treated in rats by oral gavage for 14 days, and the protective effect and candidate targets of network pharmacology were validated through morphological observation, pathological staining, and biochemical index detection. Results: A total of eight potential active components and 331 predicted targets were screened from Aucklandiae Radix, 37 of which were common targets with gastric ulcer. According to the component-target network and protein-protein interaction (PPI) network, stigmasterol, mairin, sitosterol, and dehydrocostus lactone were identified as the key components, and RAC-alpha serine/threonine-protein kinase (AKT1), prostaglandin-endoperoxide synthase 2 (PTGS2), interleukin 1 beta (IL1B), caspase-3 (CASP3), and CASP8 were selected as the core targets. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment results revealed the pharmacological mechanism of Aucklandiae Radix against gastric ulcer related to many biological processes and pathways, including antibacterial, anti-inflammatory, prostaglandin receptor response, and apoptosis. Molecular docking verification showed that the key components and core targets had good binding affinities. In the in vivo experiments, Aucklandiae Radix notably relieved the gastric ulcer by reducing the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and myeloperoxidase (MPO) while improving the gastric histopathological features. Conclusion: The overall findings suggest that Aucklandiae Radix treats gastric ulcer with a multi-component, multi-target, and multi-mechanism model.


Asunto(s)
Úlcera Gástrica , Animales , Ratas , Úlcera Gástrica/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Factor de Necrosis Tumoral alfa , Ciclooxigenasa 2
5.
Genes (Basel) ; 13(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36292625

RESUMEN

This study aimed to apply transcriptomics to determine how Molor-Dabos-4 (MD-4) protects healthy rats against indomethacin (IND)-induced gastric ulcers and to identify the mechanism behind this protective effect. Rats were pretreated with MD-4 (0.3, 1.5, or 3 g/kg per day) for 21 days before inducing gastric ulcers by oral administration with indomethacin (30 mg/kg). Unulcerated and untreated healthy rats were used as controls. Effects of the treatment were assessed based on the ulcer index, histological and pathological examinations, and indicators of inflammation, which were determined by enzyme-linked immunosorbent assay. Transcriptomic analysis was performed for identifying potential pharmacological mechanisms. Eventually, after identifying potential target genes, the latter were validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). After pretreatment with MD-4, gastric ulcers, along with other histopathological features, were reduced. MD-4 significantly (p < 0.05) increased the superoxide dismutase (SOD) levels in ulcers and reduced pepsin, TNF-α, and IL-6 levels. RNA-seq analysis identified a number of target genes on which MD-4 could potentially act. Many of these genes were involved in pathways that were linked to anti-inflammatory and antioxidant responses, and other protective mechanisms for the gastric mucosa. qRT-PCR showed that altered expression of the selected genes, such as Srm, Ryr-1, Eno3, Prkag3, and Eef1a2, was consistent with the transcriptome results. MD-4 exerts protective effects against IND-induced gastric ulcers by reducing inflammatory cytokines and pepsin and increasing the expression of SOD levels. Downregulation of Srm, Ryr-1, Eno3, Prkag3, and Eef1a2 genes involved in regulating arginine and proline metabolism, calcium signaling pathway, HIF-1 signaling pathway, oxytocin signaling pathway, and legionellosis are possibly involved in MD-4-mediated protection against gastric ulcers.


Asunto(s)
Úlcera Gástrica , Ratas , Animales , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/genética , Indometacina/efectos adversos , Antioxidantes/farmacología , Factor de Necrosis Tumoral alfa/genética , Medicina Tradicional Mongoliana , RNA-Seq , Pepsina A/efectos adversos , Oxitocina/genética , Interleucina-6/genética , Superóxido Dismutasa , Citocinas/genética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Arginina , Prolina
6.
Chin Herb Med ; 14(3): 345-355, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36117997

RESUMEN

Mongolian medicine (MM) is an important part of Mongolian culture. Exploration of MM can play a crucial role in the prevention and treatment of various diseases and can help provide better health care globally. In this article, we gave a brief introduction to the origin and development of MM, the theoretical system of MM, the principles of Mongolian materia medica formula, the modern research on Mongolian materia medica and the quality control of Mongolian materia medica. The present situation and outlook of MM were also discussed.

7.
Chin Herb Med ; 14(3): 362-366, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36118000

RESUMEN

Mongolian pharmacy is an important part of traditional medicine for the Chinese nation, with a long history and a complete theoretical system. The Mongolian people have accumulated and summarized the types and usage of Mongolian medicines in the practice of fighting against diseases over a long history. Mongolian medicinal resources are rich and diverse, the processing is self-contained, and the methods of medication are scientific and reasonable. Mongolian pharmacy not only has a deep historical relationship with traditional Chinese medicine but has also absorbed the essence of ancient Tibetan and Indian Ayurvedic medicine in the process of its development. We can identify the historical traces of the continuous exchange, communication, and integration of various ethnic medicinal cultures from the names of Mongolian medicinal materials. Because of the differences in languages and cultures of the various ethnic groups, the names of Mongolian medicinal materials have undergone a long historical period of evolution. These need to be further standardized owing to complications caused by the existence of synonyms and homonyms.

8.
Chin Herb Med ; 14(3): 343-344, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36118004
9.
Chin Herb Med ; 14(3): 392-402, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36118008

RESUMEN

Syringa oblata is a traditional Mongolian medicine mainly distributed in the Helan Mountains (the boundaries of Inner Mongolia and Ningxia, China) and the north of Yan Mountains (Aohan Qi, Inner Mongolia, China). It is clinically used to treat diseases caused by Heyi, such as heartache and heat pathogen in the heart. Phytochemical studies on S. oblata revealed the presence of iridoids, lignans, triterpenes, phenylpropanoids, phenylethanoids, and volatile components. Pharmacological investigations revealed a broad spectrum of bioactivities, such as antimicrobial, antioxidant, antiproliferative, and hepatoprotective effects. This article summarized the chemical components and pharmacological activities of S. oblata, providing a scientific rationale for its bioactive constituents, quality control, and utilization as an important medicine.

10.
Nat Prod Res ; 28(8): 534-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498887

RESUMEN

A new benzofuranone derivative, ethyl 2-(3,3-bis(7-acetyl-4,6-dihydroxy-3,5-dimethylbenzofuran-2-yl)acryloyl) (1), together with seven known compounds (2-8), was isolated from Usnea longissima. Their structures were elucidated by using spectroscopic methods, including 1D and 2D NMR experiments, UV, IR, EI-MS and HR-ESI-MS analysis.


Asunto(s)
Benzofuranos/aislamiento & purificación , Usnea/química , Benzofuranos/química , Estructura Molecular , Mongolia , Resonancia Magnética Nuclear Biomolecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA