Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Heliyon ; 10(5): e26861, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439880

RESUMEN

Objective: The aim of this study was to systematically review the clinical efficacy and safety of standardized Ginkgo biloba extract (GBE) in the adjuvant treatment of intracerebral hemorrhage (ICH). Methods: Relevant RCTs on GBE as adjuvant therapy for ICH were searched in seven Chinese and English databases. Data extraction of the included literature was performed after duplicate checking and screening, and Stata 15.1 software was applied for data analysis. Results: With a total of 19 RCTs, the meta-analysis results showed that: Compared with conventional treatment alone, GBE combined with conventional treatment had a higher effective rate; NIHSS score and CSS score were lower; The residual hematoma was less. The volume of cerebral edema was smaller. ADL score was higher. MoCA score was higher. The serum levels of hs-CRP, TNF-α and IL-6 were lower; No significant difference was observed in the incidence of adverse reactions between conventional treatment alone and GBE combined with conventional treatment. Conclusion: This study suggests that GBE as adjuvant therapy for ICH has better efficacy and is relatively safe compared with conventional treatment alone. However, due to the quality and quantity of included studies, further validation by more methodologically rigorous and multi-center studies with larger sample sizes is needed.

2.
ACS Appl Mater Interfaces ; 14(22): 25050-25064, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608833

RESUMEN

A key challenge for nanomedicines in clinical application is to reduce the dose while achieving excellent efficacy, which has attracted extensive attention in dose toxicity and potential risks. It is thus necessary to reasonably design nanomedicine with high-efficiency targeting and accumulation. Here, we designed and synthesized a tetragonal bismuthene-based "all-in-one" composite nanosystem (TPP-Bi@PDA@CP) with two-stage targeting, multimodal imaging, photothermal therapy, and immune enhancement functions. Through the elaborate design of its structure, the composite nanosystem possesses multiple properties including (i) two-stage targeting function of hepatoma cells and mitochondria [the aggregation at the tumor site is 2.63-fold higher than that of traditional enhanced permeability and retention (EPR) effect]; (ii) computed tomography (CT) contrast-enhancement efficiency as high as ∼51.8 HU mL mg-1 (3.16-fold that of the clinically available iopromide); (iii) ultrahigh photothermal conversion efficiency (52.3%, 808 nm), promising photothermal therapy (PTT), and high-contrast infrared thermal (IRT)/photoacoustic (PA) imaging of tumor; (iv) benefitting from the two-stage targeting function and excellent photothermal conversion ability, the dose used in this strategy is one of the lowest doses in hyperthermia (the inhibition rate of tumor cells was 50% at a dose of 15 µg mL-1 and 75% at a dose of 25 µg mL-1); (v) the compound polysaccharide (CP) shell with hepatoma cell targeting and immune enhancement functions effectively inhibited the recurrence of tumor. Therefore, our work reduces the dose toxicity and potential risk of nanomedicines and highlights the great potential as an all-in-one theranostic nanoplatform for two-stage targeting, integrated diagnostic imaging, photothermal therapy, and inhibition of tumor recurrence.


Asunto(s)
Carcinoma Hepatocelular , Hipertermia Inducida , Neoplasias Hepáticas , Nanopartículas , Línea Celular Tumoral , Medios de Contraste , Humanos , Hipertermia , Hipertermia Inducida/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Imagen Multimodal/métodos , Nanopartículas/química , Nanopartículas/uso terapéutico , Recurrencia Local de Neoplasia , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Tomografía Computarizada por Rayos X
3.
Ying Yong Sheng Tai Xue Bao ; 33(3): 765-774, 2022 Mar.
Artículo en Chino | MEDLINE | ID: mdl-35524530

RESUMEN

As a special bio-geomorphic landscape in the Qaidam desert area, Nitraria tangutorum nebkhas play a critical role in fixing quicksand, improving soil quality, and maintaining the stability of regional ecological environment. Taking the N. tangutorum nebkhas with coverage of approximately 15%, 25%, 45% and 60% in Gahai Lake area of Qaidam Basin as the research objects, we analyzed the vertical distribution and enrichment characteristics of soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzable nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the contents of SOM, TN, TP, TK, AN, AP and AK varied in the range of 1.67-10.22 g·kg-1, 0.05-0.42 g·kg-1, 0.31-0.54 g·kg-1, 15.87-18.84 g·kg-1, 2.26-11.68 mg·kg-1, 0.80-15.00 mg·kg-1 and 45-161 mg·kg-1, respectively. Vertically, soil nutrients in the N. tangutorum nebkhas with 15% coverage showed a decreasing trend first then increased, and then decreased again with the increase of soil depth, except for TP, which did not show any significant change. In the nebkhas with 25%, 45% and 60% coverage, SOM, TN, AN, TP and AP all showed a decreasing trend with increasing soil depth ,whereas TK and AK did not change significantly with soil layer. Above the nebkhas ground level of N. tangutorum, SOM, TN, TK, AN, AP and AK were all enriched, especially in the surface layer.Aamong all the nutrients, the enrichment rate of AN reached 5.19. In addition, below the nebkhas ground level of N. tangutorum, TN, AN, TK, AK and AP also showed enrichment. SOM, TN, AN, TP, AP, TK and AK were all significantly positively correlated with soil water content, and negatively correlated with altitude. All nutrients except TP were mainly affected by altitude. In conclusion, soil nutrient content of N. tangutorum nebkhas was the highest in the surface layer, the enrichment effect of which was not only reflected in the interior of the nebkhas, but also below the ground level of the nebkhas. Our results could provide reference for the scientific utilization of N. tangutorum nebkhas and ecological environment protection in Qaidam Basin area.


Asunto(s)
Fósforo , Suelo , China , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Potasio/análisis
4.
J Mater Chem B ; 8(30): 6402-6417, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32573629

RESUMEN

Cancer is a leading cause of human mortality. Given that it is difficult for conventional therapeutic approaches to effectively eradicate tumors and inhibit their recurrence and metastasis, new therapeutic strategies for solving this problem are urgently needed. In this work, we report the development of a two-dimensional titanium carbide nanocomposite drug delivery system. The system can be used for the synergistic treatment of tumors through photothermal/photodynamic/chemotherapy and can also inhibit tumor recurrence and metastasis by activating the immune system. A surface modification engineering strategy has been elaborately designed to realize the multifunctionalization of an MXene, Ti3C2. In this strategy, the nanocomposite drug delivery system (Ti3C2@Met@CP) was established via layer by layer adsorption of metformin (Met) and compound polysaccharide (CP) on the surface of Ti3C2 nanosheets. Among these materials, the synthesized (AlOH)4--functionalized Ti3C2 nanosheets possess strong near-infrared absorption (extinction coefficient of 36.2 L g-1 cm-1), high photothermal conversion efficiency (∼59.6%) and effective singlet oxygen generation (1O2). Compound polysaccharide (CP) is a new immunomodulator formed by mixing lentinan, pachymaran and tremella polysaccharides in optimal proportions. Especially, the decoration of CP onto the Ti3C2 nanosheets endows Ti3C2 with a well-defined shell, improves its tumor site aggregation and biocompatibility, and activates the host's immune functions. The synergistic eradication and inhibition of tumor recurrence and metastasis have been systematically evaluated by in vivo and in vitro experiments.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Nanocápsulas/química , Nanocompuestos/química , Titanio/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Materiales Biocompatibles/química , Terapia Combinada , Liberación de Fármacos , Femenino , Glucanos/química , Glucanos/farmacología , Humanos , Rayos Infrarrojos , Lentinano/química , Lentinano/farmacología , Metformina/química , Ratones Endogámicos BALB C , Ratones Desnudos , Fototerapia , Polisacáridos/química , Oxígeno Singlete/química
5.
PLoS Genet ; 15(11): e1008478, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31693685

RESUMEN

Circadian rhythms allow animals to coordinate behavioral and physiological processes with respect to one another and to synchronize these processes to external environmental cycles. In most animals, circadian rhythms are produced by core clock neurons in the brain that generate and transmit time-of-day signals to downstream tissues, driving overt rhythms. The neuronal pathways controlling clock outputs, however, are not well understood. Furthermore, it is unclear how the central clock modulates multiple distinct circadian outputs. Identifying the cellular components and neuronal circuitry underlying circadian regulation is increasingly recognized as a critical step in the effort to address health pathologies linked to circadian disruption, including heart disease and metabolic disorders. Here, building on the conserved components of circadian and metabolic systems in mammals and Drosophila melanogaster, we used a recently developed feeding monitor to characterize the contribution to circadian feeding rhythms of two key neuronal populations in the Drosophila pars intercerebralis (PI), which is functionally homologous to the mammalian hypothalamus. We demonstrate that thermogenetic manipulations of PI neurons expressing the neuropeptide SIFamide (SIFa) as well as mutations of the SIFa gene degrade feeding:fasting rhythms. In contrast, manipulations of a nearby population of PI neurons that express the Drosophila insulin-like peptides (DILPs) affect total food consumption but leave feeding rhythms intact. The distinct contribution of these two PI cell populations to feeding is accompanied by vastly different neuronal connectivity as determined by trans-Tango synaptic mapping. These results for the first time identify a non-clock cell neuronal population in Drosophila that regulates feeding rhythms and furthermore demonstrate dissociable control of circadian and homeostatic aspects of feeding regulation by molecularly-defined neurons in a putative circadian output hub.


Asunto(s)
Relojes Circadianos/genética , Drosophila melanogaster/genética , Conducta Alimentaria/fisiología , Proteínas Circadianas Period/genética , Animales , Animales Modificados Genéticamente , Encéfalo/fisiología , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Ayuno , Hipotálamo/metabolismo , Mamíferos/genética , Mamíferos/fisiología , Neuroglía/fisiología , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo
6.
Int J Biol Macromol ; 137: 904-911, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31252011

RESUMEN

Development of high photothermal performance and biocompatible nanotherapeutic agents is of great importance for photothermal cancer treatment. In this paper, we have developed lentinan decorated tungsten oxide nanorods (W18O49@LTN NRs) via a mild one-step solvothermal route. Owing to the numerous surface hydroxyl groups of polymer chains, the presence of lentinan layer in the surface of W18O49 NRs lead to good biocompatibility. The lentinan layer also affects the crystal structure of W18O49 and improves near-infrared absorption (~1.7 × 109 M-1 cm-1 at 980 nm), which is two orders of higher than previously reported PEGylated W18O49 nanowires. Even under near-infrared (NIR) laser irradiation at a very low power density of 0.4 W/cm2, the temperature of W18O49@LTN NRs aqueous dispersion (125 µg/mL) could increase by 15.1 °C. The photothermal conversion efficiency of W18O49@LTN NRs reaches 33.86%, which is higher than previously reported WO3-x hierarchical nanostructures (28.1%). Importantly, when cancer cells were treated with W18O49@LTN NRs (200 µg/mL) and 980 nm laser (0.4 W/cm2), a significant photo-induced cell killing behavior was observed. This work demonstrates that W18O49@LTN NRs have the potential for precise cancer treatment.


Asunto(s)
Lentinano/química , Lentinano/uso terapéutico , Nanomedicina/métodos , Nanotubos/química , Neoplasias/terapia , Óxidos/química , Fototerapia/métodos , Tungsteno/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-28471067

RESUMEN

Magnetic nanomaterials integrating supplemental functional materials are called magnetic hybrid nanomaterials (MHNs). Such MHNs have drawn increasing attention due to their biocompatibility and the potential applications either as alternative contrast enhancing agents or effective heat nanomediators in hyperthermia therapy. The joint function comes from the hybrid nanostructures. Hybrid nanostructures of different modification can be easily achieved owing to the large surface-area-to-volume ratio and sophisticated surface characteristic. In this focus article, we mainly discussed the design and synthesis of MHNs and their applications as multimodal imaging probes and therapy agents in biomedicine. These MHNs consisting magnetic nanomaterials with functional nanocomponents such as noble metal or isotopes could perform not only superparamagnetism but also features that can be adapted in, for example, enhancing computed tomography contrast modalities, positron emission tomography, and single-photon emission computed tomography. The combination of several techniques provides more comprehensive information by both synergizing the advantages, such as quantitative evaluation, higher sensitivity and spatial resolution, and mitigating the disadvantages. Such hybrid nanostructures could also provide a unique nanoplatform for enhanced medical tracing, magnetic field, and light-triggered hyperthermia. Moreover, potential advantages and opportunities will be achieved via a combination of diagnostic and therapeutic agents within a single platform, which is so-called 'theranostics.' We expect the combination of unique structural characteristics and integrated functions of multicomponent magnetic hybrid nanomaterials will attract increasing research interest and could lead to new opportunities in nanomedicine and nanobiotechnology. WIREs Nanomed Nanobiotechnol 2018, 10:e1476. doi: 10.1002/wnan.1476 This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices.


Asunto(s)
Nanopartículas de Magnetita/química , Nanoestructuras/química , Nanomedicina Teranóstica , Humanos , Hipertermia Inducida , Imagen Multimodal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA