Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 2491, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32051524

RESUMEN

Dendritic atrophy, defined as the reduction in complexity of the neuronal arborization, is a hallmark of several neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, affecting 1:10,000 girls worldwide, is mainly caused by mutations in the MECP2 gene and has no cure. We describe here an in vitro model of dendritic atrophy in Mecp2-/y mouse hippocampal primary cultures, suitable for phenotypic drug-screening. Using High-Content Imaging techniques, we systematically investigated the impact of culturing determinants on several parameters such as neuronal survival, total dendritic length, dendritic endpoints, soma size, cell clusterization, spontaneous activity. Determinants included cell-seeding density, glass or polystyrene substrates, coating with poly-Ornithine with/without Matrigel and miniaturization from 24 to 96-half surface multiwell plates. We show that in all plate-sizes at densities below 320 cells/mm2, morphological parameters remained constant while spontaneous network activity decreased according to the cell-density. Mecp2-/y neurons cultured at 160 cells/mm2 density in 96 multiwell plates, displayed significant dendritic atrophy and showed a marked increase in dendritic length following treatment with Brain-derived neurotrophic factor (BDNF) or Mirtazapine. In conclusion, we have established a phenotypic assay suitable for fast screening of hundreds of compounds, which may be extended to other neurodevelopmental diseases with dendritic atrophy.


Asunto(s)
Dendritas/patología , Evaluación Preclínica de Medicamentos/métodos , Fármacos Neuroprotectores/farmacología , Fenotipo , Síndrome de Rett/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Dendritas/efectos de los fármacos , Hipocampo/citología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Mirtazapina/farmacología , Síndrome de Rett/patología
2.
Dis Model Mech ; 7(9): 1057-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25062689

RESUMEN

Neonatal jaundice is caused by high levels of unconjugated bilirubin. It is usually a temporary condition caused by delayed induction of UGT1A1, which conjugates bilirubin in the liver. To reduce bilirubin levels, affected babies are exposed to phototherapy (PT), which converts toxic bilirubin into water-soluble photoisomers that are readily excreted out. However, in some cases uncontrolled hyperbilirubinemia leads to neurotoxicity. To study the mechanisms of bilirubin-induced neurological damage (BIND) in vivo, we generated a mouse model lacking the Ugt1a1 protein and, consequently, mutant mice developed jaundice as early as 36 hours after birth. The mutation was transferred into two genetic backgrounds (C57BL/6 and FVB/NJ). We exposed mutant mice to PT for different periods and analyzed the resulting phenotypes from the molecular, histological and behavioral points of view. Severity of BIND was associated with genetic background, with 50% survival of C57BL/6­Ugt1(-/-) mutant mice at postnatal day 5 (P5), and of FVB/NJ-Ugt1(-/-) mice at P11. Life-long exposure to PT prevented cerebellar architecture alterations and rescued neuronal damage in FVB/NJ-Ugt1(-/-) but not in C57BL/6-Ugt1(-/-) mice. Survival of FVB/NJ-Ugt1(-/-) mice was directly related to the extent of PT treatment. PT treatment of FVB/NJ-Ugt1(-/-) mice from P0 to P8 did not prevent bilirubin-induced reduction in dendritic arborization and spine density of Purkinje cells. Moreover, PT treatment from P8 to P20 did not rescue BIND accumulated up to P8. However, PT treatment administered in the time-window P0-P15 was sufficient to obtain full rescue of cerebellar damage and motor impairment in FVB/NJ-Ugt1(-/-) mice. The possibility to modulate the severity of the phenotype by PT makes FVB/NJ-Ugt1(-/-) mice an excellent and versatile model to study bilirubin neurotoxicity, the role of modifier genes, alternative therapies and cerebellar development during high bilirubin conditions.


Asunto(s)
Envejecimiento/fisiología , Bilirrubina/fisiología , Cerebelo/fisiopatología , Animales , Humanos , Recién Nacido , Ictericia Neonatal/fisiopatología , Ictericia Neonatal/terapia , Ratones , Ratones Endogámicos C57BL , Fenotipo , Fototerapia
3.
J Biol Chem ; 289(40): 27702-13, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25074925

RESUMEN

The neurotrophin brain-derived neurotrophic factor (BDNF) is a key regulator of neuronal development and plasticity. BDNF is a major pharmaceutical target in neurodevelopmental and psychiatric disorders. However, pharmacological modulation of this neurotrophin is challenging because BDNF is generated by multiple, alternatively spliced transcripts with different 5'- and 3'UTRs. Each BDNF mRNA variant is transcribed independently, but translation regulation is unknown. To evaluate the translatability of BDNF transcripts, we developed an in vitro luciferase assay in human neuroblastoma cells. In unstimulated cells, each BDNF 5'- and 3'UTR determined a different basal translation level of the luciferase reporter gene. However, constructs with either a 5'UTR or a 3'UTR alone showed poor translation modulation by BDNF, KCl, dihydroxyphenylglycine, AMPA, NMDA, dopamine, acetylcholine, norepinephrine, or serotonin. Constructs consisting of the luciferase reporter gene flanked by the 5'UTR of one of the most abundant BDNF transcripts in the brain (exons 1, 2c, 4, and 6) and the long 3'UTR responded selectively to stimulation with the different receptor agonists, and only transcripts 2c and 6 were increased by the antidepressants desipramine and mirtazapine. We propose that BDNF mRNA variants represent "a quantitative code" for regulated expression of the protein. Thus, to discriminate the efficacy of drugs in stimulating BDNF synthesis, it is appropriate to use variant-specific in vitro screening tests.


Asunto(s)
Empalme Alternativo , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Factor Neurotrófico Derivado del Encéfalo/genética , Evaluación Preclínica de Medicamentos , Extensión de la Cadena Peptídica de Translación , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Genes Reporteros , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
FASEB J ; 26(3): 1052-63, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22094718

RESUMEN

Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.


Asunto(s)
Síndrome de Crigler-Najjar/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Glucuronosiltransferasa/genética , Animales , Animales Recién Nacidos , Bilirrubina/sangre , Northern Blotting , Western Blotting , Cerebelo/enzimología , Cerebelo/metabolismo , Cerebelo/patología , Síndrome de Crigler-Najjar/enzimología , Síndrome de Crigler-Najjar/mortalidad , Dependovirus/clasificación , Dependovirus/genética , Regulación Enzimológica de la Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Glucuronosiltransferasa/deficiencia , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA