RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: The use of herbal medicines for prophylaxis, prevention, and treatment of various ailments is rising throughout the world because they are thought to be safer than allopathic treatments, which they are. However, several investigations have documented the toxicity and adverse drug reactions (ADR) of certain formulations and botanicals if not consumed wisely. AIM OF THE STUDY: The goal of the current study is to address herbal medication pharmacovigilance (PV) modeling and related considerations for improved patient safety. Also, focus is laid on the comprehensive and critical analysis of the current state of PV for herbal medications at the national and international levels. MATERIALS AND METHODS: Targeted review also known as focused literature review methodology was utilized for exploring the data from various scientific platforms such as Science Direct, Wiley Online Library, Springer, PubMed, Google Scholar using "pharmacovigilance, herbal medicine, traditional medicine, ADR, under reporting, herb toxicity, herb interactions" as keywords along with standard literature pertaining to herbal medicines that is published by the WHO and other international and national organizations etc. The botanical names mentioned in the present article were authenticated using World Flora Online database. RESULTS: The historical developments paving the way for PV in regulatory setup were also discussed, along with various criteria's for monitoring herbal medicine, ADR of herbs, phytoconstituents, and traditional medicines, herb-drug interactions, modes of reporting ADR, databases for reporting ADR's, provisions of PV in regulatory framework of different nations, challenges and way forward in PV are discussed in detail advocating a robust drug safety ecosystem for herbal medicines. CONCLUSION: Despite recent efforts to encourage the reporting of suspected ADRs linked to herbal medicines, such as expanding the programme and adding community pharmacists and other healthcare professionals as recognized reporters, the number of herbal ADR reports received by the regulatory bodies remains comparatively low. Since users often do not seek professional advice or report if they have side effects, under-reporting, is anticipated to be significant for herbal medications. There are inadequate quality control methods, poor regulatory oversight considering herbs used in food and botanicals, and unregulated distribution channels. In addition, botanical identity, traceability of herbs, ecological concerns, over-the-counter (OTC) herbal medicines, patient-physicians barriers requires special focus by the regulatory bodies for improved global safety of herbal medicines.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Plantas Medicinales , Humanos , Farmacovigilancia , Ecosistema , Plantas Medicinales/efectos adversos , Medicina de Hierbas , Extractos VegetalesRESUMEN
Osteoarthritis (OA), a chronic degenerative musculoskeletal disorder, progressively increases with age. It is characterized by progressive loss of hyaline cartilage followed by subchondral bone remodeling and inflammaging. To counteract the inflammation, synovium releases various inflammatory and immune mediators along with metabolic intermediates, which further worsens the condition. However, even after recognizing the key molecular and cellular factors involved in the progression of OA, only disease-modifying therapies are available such as oral and topical NSAIDs, opioids, SNRIs, etc., providing symptomatic treatment and functional improvement instead of suppressing OA progression. Long-term use of these therapies leads to various life-threatening complications. Interestingly, mother nature has numerous medicinal plants containing active phytochemicals that can act on various targets involved in the development and progression of OA. Phytochemicals have been used for millennia in traditional medicine and are promising alternatives to conventional drugs with a lower rate of adverse events and efficiency frequently comparable to synthetic molecules. Nevertheless, their mechanism of action in many cases is elusive and uncertain. Even though many in vitro and in vivo studies show promising results, clinical evidence is scarce. Studies suggest that the presence of carbonyl group in the 2nd position, chloro in the 6th and an electron- withdrawing group at the 7th position exhibit enhanced COX-2 inhibition activity in OA. On the other hand, the presence of a double bond at the C2-C3 position of C ring in flavonoids plays an important role in Nrf2 activation. Moreover, with the advancements in the understanding of OA progression, SARs (structure-activity relationships) of phytochemicals and integration with nanotechnology have provided great opportunities for developing phytopharmaceuticals. Therefore, in the present review, we have discussed various promising phytomolecules, SAR as well as their nano-based delivery systems for the treatment of OA to motivate the future investigation of phytochemical-based drug therapy.