Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nat Prod ; 85(7): 1886-1891, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35771948

RESUMEN

Six new halogenated butenolides, tongalides A-C (1-3) and their acetylated congeners (4-6), were isolated from an extract of the Antarctic rhodophyte Delisea sp. that displayed significant antibiotic activity. The structures of the compounds were determined by analysis of data acquired by spectroscopic and spectrometric techniques including NMR, HRESIMS, optical rotation, and X-ray diffraction studies. The newly isolated compounds were assayed for antibacterial activity, but exhibited no growth inhibition of ESKAPE pathogens. The extract bioactivity was attributed to the previously reported Z-acetoxyfimbrolide A also isolated from the extract, providing further evidence that the exocyclic double bond is essential to the antibacterial activity of the structurally related fimbrolide class of metabolite.


Asunto(s)
4-Butirolactona , Antibacterianos , 4-Butirolactona/análogos & derivados , Regiones Antárticas , Antibacterianos/química , Estructura Molecular , Extractos Vegetales
2.
Mar Drugs ; 20(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35049897

RESUMEN

Phylum Cnidaria has been an excellent source of natural products, with thousands of metabolites identified. Many of these have not been screened in bioassays. The aim of this study was to explore the potential of 5600 Cnidaria natural products (after excluding those known to derive from microbial symbionts), using a systematic approach based on chemical space, drug-likeness, predicted toxicity, and virtual screens. Previous drug-likeness measures: the rule-of-five, quantitative estimate of drug-likeness (QED), and relative drug likelihoods (RDL) are based on a relatively small number of molecular properties. We augmented this approach using reference drug and toxin data sets defined for 51 predicted molecular properties. Cnidaria natural products overlap with drugs and toxins in this chemical space, although a multivariate test suggests that there are some differences between the groups. In terms of the established drug-likeness measures, Cnidaria natural products have generally lower QED and RDL scores than drugs, with a higher prevalence of metabolites that exceed at least one rule-of-five threshold. An index of drug-likeness that includes predicted toxicity (ADMET-score), however, found that Cnidaria natural products were more favourable than drugs. A measure of the distance of individual Cnidaria natural products to the centre of the drug distribution in multivariate chemical space was related to RDL, ADMET-score, and the number of rule-of-five exceptions. This multivariate similarity measure was negatively correlated with the QED score for the same metabolite, suggesting that the different approaches capture different aspects of the drug-likeness of individual metabolites. The contrasting of different drug similarity measures can help summarise the range of drug potential in the Cnidaria natural product data set. The most favourable metabolites were around 210-265 Da, quite often sesquiterpenes, with a moderate degree of complexity. Virtual screening against cancer-relevant targets found wide evidence of affinities, with Glide scores <-7 in 19% of the Cnidaria natural products.


Asunto(s)
Productos Biológicos , Cnidarios , Animales , Organismos Acuáticos , Evaluación Preclínica de Medicamentos
3.
J Ethnopharmacol ; 269: 113672, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33301916

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia catappa L. (West Indian-Almond) is a medicinal plant used in traditional medicine for the treatment of infectious diseases. Moreover, various organic extracts prepared from this plant have been reported to exhibit antiplasmodial activity. AIM OF THE STUDY: The need for new antimalarials is still an urgency driven by the alarmingly high burden of malaria in endemic regions, with multitude of people dying annually. We have previously identified an endophytic fungus Aspergillus niger 58 harboured by T. catappa as having promising specialized secondary metabolites against the malaria parasites. In the present study, we report the antiplasmodial activity-guided chromatographic isolation of some metabolites secreted by this endophytic fungus. MATERIALS AND METHODS: The SYBR Green I-based fluorescence microtiter plate assay was used to monitor the growth of Plasmodium falciparum parasites in culture in the presence and absence of inhibitors and results were validated by microscopic analysis of Giemsa-stained culture smears. Giemsa-stain microscopy was also used to study the cell cycle stage-specific action of selected fractions. RESULTS: The results revealed that the multidimensional purification of the crude extract (IC50: 4.03 µg/mL) provided RPHPLC F17 (IC50: 0.09 µg/mL) and RPHPLC F18 (IC50: 0.1 µg/mL) with activity against P. falciparum 3D7 (Pf3D7) strain. Moreover, both fractions at IC99 (0.5 µg/mL) exhibited multi-stages action by targeting all the three stages of the life cycle of blood-stage Pf3D7. Two compounds, flavasperone (1) and aurasperone A (2) were isolated, of which aurasperone A exhibited good potency against Pf3D7 (IC50: 4.17 µM) and P. falciparum INDO (PfINDO) (IC50: 3.08 µM). CONCLUSION: Our study adds credence to the notion that endophytic extracts are potential storehouses for potent specialized secondary metabolites that can be harnessed to fight the malaria parasite and reduce the burden of this disease worldwide. An endophyte that can be cultured in laboratory with ability to secrete promising metabolites of medicinal value holds the promise of conserving Nature from the threat of annihilation of flora for medicinal purposes.


Asunto(s)
Antimaláricos/metabolismo , Antimaláricos/farmacología , Aspergillus niger/metabolismo , Plasmodium falciparum/efectos de los fármacos , Terminalia/metabolismo , Antimaláricos/aislamiento & purificación , Aspergillus niger/aislamiento & purificación , Células HEK293 , Humanos , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Plasmodium falciparum/fisiología
4.
Parasitol Res ; 117(8): 2473-2485, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29797084

RESUMEN

Plasmodial resistance to artemisinin-based combination therapies emphasizes the need for new drug development to control malaria. This paper describes the antiplasmodial activity of metabolites produced by endophytic fungi of three Cameroonian plants. Ethyl acetate extracts of fungi cultivated on three different media were tested against Plasmodium falciparum chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfINDO) strains using the SYBR green florescence assay. Selected endophytes were further grown in potato dextrose broth supplemented with small organic elicitors and their extracts tested for activity. The effect of elicitors on de novo metabolite synthesis was assessed by reverse-phase HPLC. Activity screening of 81 extracts indicated that Aspergillus niger 58 (IC50 2.25-6.69 µg/mL, Pf3D7), Fusarium sp. N240 (IC50 1.62-4.38 µg/mL, Pf3D7), Phomopsis sp. N114 (IC50 0.34-7.26 µg/mL, Pf3D7), and Xylaria sp. N120 (IC50 2.69-6.77 µg/mL, Pf3D7) produced potent extracts when grown in all three media. Further culture of these endophytes in potato dextrose broth supplemented with each of the eight small organic elicitors and subsequent extracts screening indicated the extract of Phomopsis sp. N114 grown with 1% 1-butanol to be highly selective and extremely potent (IC50 0.20-0.33 µg/mL; SI > 666). RPHPLC profiles of extracts of Phomopsis sp. N114 grown with or without 1-butanol showed some peaks of enhanced intensities in the former without any qualitative change in the chromatograms. This study showed the ability of selected endophytes to produce potent and selective antiplasmodial metabolites in varied culture conditions. It also showed how the production of desired metabolites can be enhanced by use of small molecular weight elicitors.


Asunto(s)
Antimaláricos/farmacología , Aspergillus niger/metabolismo , Cananga/microbiología , Extractos Celulares/farmacología , Fusarium/metabolismo , Plasmodium falciparum/efectos de los fármacos , Terminalia/microbiología , Xylariales/metabolismo , Antimaláricos/metabolismo , Artemisininas/farmacología , Aspergillus niger/aislamiento & purificación , Agentes de Control Biológico/metabolismo , Agentes de Control Biológico/farmacología , Camerún , Cloroquina/farmacología , Medios de Cultivo Condicionados , Fusarium/aislamiento & purificación , Malaria/tratamiento farmacológico , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/farmacología , Plantas Medicinales/microbiología , Xylariales/aislamiento & purificación
5.
Med Res Rev ; 36(1): 144-68, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25545963

RESUMEN

The ongoing search for effective antiplasmodial agents remains essential in the fight against malaria worldwide. Emerging parasitic drug resistance places an urgent need to explore chemotherapies with novel structures and mechanisms of action. Natural products have historically provided effective antimalarial drug scaffolds. In an effort to search nature's chemical potential for antiplasmodial agents, unconventionally sourced organisms coupled with innovative cultivation techniques were utilized. Approximately 60,000 niche microbes from various habitats (slow-growing terrestrial fungi, Antarctic microbes, and mangrove endophytes) were cultivated on a small-scale, extracted, and used in high-throughput screening to determine antimalarial activity. About 1% of crude extracts were considered active and 6% partially active (≥ 67% inhibition at 5 and 50 µg/mL, respectively). Active extracts (685) were cultivated on a large-scale, fractionated, and screened for both antimalarial activity and cytotoxicity. High interest fractions (397) with an IC50 < 1.11 µg/mL were identified and subjected to chromatographic separation for compound characterization and dereplication. Identifying active compounds with nanomolar antimalarial activity coupled with a selectivity index tenfold higher was accomplished with two of the 52 compounds isolated. This microscale, high-throughput screening project for antiplasmodial agents is discussed in the context of current natural product drug discovery efforts.


Asunto(s)
Antimaláricos/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Técnicas Bacteriológicas/métodos , Hongos/crecimiento & desarrollo , Microbiota , Micología/métodos , Animales , Bioensayo , Línea Celular Tumoral , Chlorocebus aethiops , Cromatografía , Perros , Descubrimiento de Drogas , Resistencia a Medicamentos , Humanos , Concentración 50 Inhibidora , Invertebrados/microbiología , Células de Riñón Canino Madin Darby , Espectroscopía de Resonancia Magnética , Malaria/tratamiento farmacológico , Miniaturización , Extractos Vegetales/química , Plasmodium falciparum/efectos de los fármacos , Células Vero
6.
Planta Med ; 80(4): 343-50, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24488718

RESUMEN

Bacterial biofilms are responsible for many persistent infections by many clinically relevant pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. Biofilms are much more resistant to conventional antibiotics than their planktonic counterparts. Quorum sensing, an intercellular communication system, controls pathogenesis and biofilm formation in most bacterial species. Quorum sensing provides an important pharmacological target since its inhibition does not provide a selective pressure for resistance. In this study, we investigated the quorum sensing and biofilm inhibitory activities of 126 plant extracts from 71 species collected from neotropical rainforests in Costa Rica. Quorum sensing and biofilm interference were assessed using a modified disc diffusion bioassay with Chromobacterium violaceum ATCC 12,472 and a spectrophotometric bioassay with Pseudomonas aeruginosa PA14, respectively. Species with significant anti-quorum sensing and/or anti-biofilm activities belonged to the Meliaceae, Melastomataceae, Lepidobotryaceae, Sapindaceae, and Simaroubaceae families. IC50 values ranged from 45 to 266 µg/mL. Extracts of these active species could lead to future development of botanical treatments for biofilm-associated infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Chromobacterium/efectos de los fármacos , Magnoliopsida/química , Extractos Vegetales/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Costa Rica , Árboles , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA