Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 14(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36079898

RESUMEN

Saturated free fatty acids (FFAs) such as palmitate in the circulation are known to cause endoplasmic reticulum (ER) stress and insulin resistance in peripheral tissues. In addition to protein kinase B (AKT) signaling, extracellular signal-regulated kinase (ERK) has been implicated in the development of insulin resistance. However, there are conflicting data regarding role of ERK signaling in ER stress-induced insulin resistance. In this study, we investigated the effects of ER stress on insulin resistance and ERK phosphorylation in Huh-7 cells and evaluated how oleate prevents palmitate-mediated ER stress. Treatment with insulin resulted in an increase of 38-45% in the uptake of glucose in control cells compared to non-insulin-treated control cells, along with an increase in the phosphorylation of AKT and ERK. We found that treatment with palmitate increased the expression of ER stress genes, including the splicing of X box binding protein 1 (XBP1) mRNA. At the same time, we observed a decrease in insulin-mediated uptake of glucose and ERK phosphorylation in Huh-7 cells, without any change in AKT phosphorylation. Supplementation of oleate along with palmitate mitigated the palmitate-induced ER stress but did not affect insulin-mediated glucose uptake or ERK phosphorylation. The findings of this study suggest that palmitate reduces insulin-mediated ERK phosphorylation in liver cells and this effect is independent of fatty-acid-induced ER stress.


Asunto(s)
Resistencia a la Insulina , Insulina , Estrés del Retículo Endoplásmico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacología , Hígado/metabolismo , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Palmitatos/metabolismo , Palmitatos/farmacología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
2.
Nutr Metab (Lond) ; 13: 50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27508000

RESUMEN

Nutritional research in sickle cell disease has been the focus in recent times owing to not only specific nutritional deficiencies, but also the improvements associated with less painful episodes. Though hydroxyurea remains the drug of choice, certain adverse health effects on long term supplementation makes room for researches of different compounds. Macro and micro nutrient deficiencies, along with vitamins, play an important role in not only meeting the calorific needs, but also reducing clinical complications and growth abnormalities. Symptoms of hyper protein metabolism, increased cell turnover, increased cardiac output, and appetite suppression due to enhanced cytokine production, might give us leads for better understanding of the mechanisms involved. Different nutritional approaches comprising of traditional herbal therapies, antioxidants, flavonoids, vitamins, minerals etc., reducing oxidative stress and blood aggregation, have been tried out to increase the health potential. Nutritional therapies may also serve complementary to the newer therapies using ozone, hematopoietic stem cell transplantation, antifungal medications, erythropoietin etc. Herein we try to present a holistic picture of the different patho-physiological mechanisms, and nutritional strategies adopted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA