Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37959821

RESUMEN

In the last decade, the urgent need to explore medicinal plants or drug development has increased enormously around the world to overcome numerous health problems. In the present investigation, HPLC indicated the existence of 18 phenolic and flavonoid compounds in the Cupressus sempervirens extract. Hesperetin represents the greatest concentration (25,579.57 µg/mL), while other compounds, such as pyro catechol, rutin, gallic acid, chlorogenic acid, naringenin, and quercetin, were recognized in concentrations of 2922.53 µg/mL, 1313.26 µg/mL, 1107.26 µg/mL, 389.09 µg/mL, 156.53 µg/mL, and 97.56 µg/mL, respectively. The well diffusion method documented the antibacterial/antifungal activity of C. sempervirens extract against E. faecalis, E. coli, C. albicans, S. typhi, S.aureus, and M. circinelloid with 35, 33, 32, 25, 23, and 21 mm inhibition zones, respectively, more than the standard antibiotic/antifungal agent. Low values ranging from 7.80 to 15.62 µg/mL of MIC and MBC were recorded for E. faecalis, E. coli, and C. albicans. From the 1- diphenyl-2-picryl hydrazyl (DPPH) assay, promising antioxidant activity was recorded for C. sempervirens extract with IC50 of an 8.97 µg/mL. Moreover, ferric reducing antioxidant power (FRAP) and total antioxidant capacity assays (TAC) confirmed the antioxidant activity of the extract, which was expressed as the ascorbic acid equivalent (AAE) of 366.9 ± 0.2 µg/mg and 102 ± 0.2 µg/mg of extracts, respectively. α-amylase and α-glucosidase inhibition % were determined to express the antidiabetic activity of the extract in vitro, with promising IC50 value (27.01 µg/mL) for α-amylase compared to that of acarbose (50.93 µg/mL), while IC50 value of the extract for α-glucosidase was 19.21µg/mL compared to that of acarbose 4.13 µg/mL. Prothrombin time (PT) and activated partial thromboplastin time (APTT) revealed the role of C. sempervirens extract as an anticoagulant agent if compared with the activity of heparin. Binding interactions of hesperetin and gallic acid were examined via the Molecular Operating Environment (MOE) Dock software against E. faecalis (PDB ID: 3CLQ), C. albicans (PDB ID: 7RJC), α-amylase (PDB ID: 4W93), and α-glucosidase (PDB ID: 3TOP). The obtained results shed light on how molecular modeling methods might inhibit the tested compounds, which have the potential to be useful in the treatment of target proteins.


Asunto(s)
Antioxidantes , Cupressus , Antioxidantes/farmacología , Antioxidantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Acarbosa , alfa-Glucosidasas/metabolismo , Escherichia coli/metabolismo , Antibacterianos/farmacología , Antifúngicos/farmacología , alfa-Amilasas
2.
J Appl Microbiol ; 133(6): 3296-3306, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36106420

RESUMEN

AIM: Biodegradation is a cost-effective and eco-friendly treatment for oil-contaminated materials using microorganisms. Bacteria and fungi can degrade petroleum by using it as an energy source and this may provide an enormous scope to remediate soils contaminated with petroleum and oil. This study aimed to assess the biodegradation of petroleum hydrocarbons by certain Cladosporium species. METHODS AND RESULTS: By using traditional and spectroscopic assessment analysis, qualitative screening was carried out using Cladosporium spores isolated from air and cultured on mineral salt medium supplemented with petroleum hydrocarbon as the sole carbon source, followed by quantitative assessment using gas chromatography-mass spectroscopy. Nineteen Cladosporium strains from a total of 212 isolates exhibited remarkable capability to degrade petroleum hydrocarbon, representing four species (C. herbarum, C. macrocarpum, C. sphaerospermum, and C. cladosporioides). The results were expressed in terms of biodegradation percentage and optical density of hydrocarbon using a standard calibration curve. The highest reduction of petroleum hydrocarbon was observed with five Cladosporium strains belonging to two species (C. sphaerospermum and C. cladosporioides). CONCLUSION: This study succeeded in isolating several Cladosporium strains (from the air) with a high ability to degrade crude oil that can be used as biological agents to control petroleum pollution in soils and seas. The addition of a surfactant (Tween 80) enhanced the degradation of crude oil reaching a final concentration of 0.4%. Based on these results, the present study could indicate some unique prospects in the field of bioremediation and biodegradation of petroleum-contaminated soil. SIGNIFICANCE AND IMPACT OF STUDY: This study gives unique prospects in the field of bioremediation and biodegradation of petroleum-contaminated soil.


Asunto(s)
Petróleo , Contaminantes del Suelo , Petróleo/metabolismo , Biodegradación Ambiental , Cladosporium/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo , Suelo/química
3.
Molecules ; 27(15)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35956775

RESUMEN

Multiple biological functions of Mentha pulegium extract were evaluated in the current work. Phytochemical components of the M. pulegium extract were detected by Gas Chromatography-Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC). Moreover, M. pulegium extract was estimated for antioxidant potential by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, antimicrobial activity by well diffusion, and anticoagulant activity via prothrombin time (PT) and activated partial thromboplastin time (APTT). GC-MS analysis detected compounds including cholesterol margarate, stigmast-5-en-3-ol, 19-nor-4-androstenediol, androstan-17-one, pulegone-1,2-epoxide, isochiapin B, dotriacontane, hexadecanoic acid and neophytadiene. Chrysoeriol (15.36 µg/mL) was followed by kaempferol (11.14 µg/mL) and 7-OH flavone (10.14 µg/mL), catechin (4.11 µg/mL), hisperdin (3.05 µg/mL), and luteolin (2.36 µg/mL) were detected by HPLC as flavonoids, in addition to ferulic (13.19 µg/mL), cinnamic (12.69 µg/mL), caffeic (11.45 µg/mL), pyrogallol (9.36 µg/mL), p-coumaric (5.06 µg/mL) and salicylic (4.17 µg/mL) as phenolics. Antioxidant activity was detected with IC50 18 µg/mL, hemolysis inhibition was recorded as 79.8% at 1000 µg/mL, and PT and APTT were at 21.5 s and 49.5 s, respectively, at 50 µg/mL of M. pulegium extract. The acute toxicity of M. pulegium extract was recorded against PC3 (IC50 97.99 µg/mL) and MCF7 (IC50 80.21 µg/mL). Antimicrobial activity of M. pulegium extract was documented against Bacillus subtilis, Escherichia coli, Pseudomonasaureus, Candida albicans, Pseudomonas aeruginosa, but not against black fungus Mucor circinelloides. Molecular docking was applied using MOE (Molecular Operating Environment) to explain the biological activity of neophytadiene, luteolin, chrysoeriol and kaempferol. These compounds could be suitable for the development of novel pharmacological agents for treatment of cancer and bacterial infections.


Asunto(s)
Antiinfecciosos , Mentha pulegium , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antioxidantes/química , Hemólisis , Hemolíticos , Quempferoles , Luteolina , Mentha pulegium/química , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
4.
Sci Rep ; 12(1): 5914, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396383

RESUMEN

Secondary plant metabolites remain one of the key sources of therapeutic agents despite the development of new approaches for the discovery of medicinal drugs. In the current study, chemical analysis, and biological activities of Kei apple (Dovyalis caffra) methanolic extract were evaluated. Chemical analysis was performed using HPLC and GC-MS. Antiviral and anticancer effect were assessed using the crystal violet technique and activity against human liver cells (HepG2), respectively. Antibacterial activity was tested with the disc diffusion method. The obtained results showed that chlorogenic acid (2107.96 ± 0.07 µg/g), catechin (168 ± 0.58 µg/g), and gallic acid (15.66 ± 0.02 µg/g) were the main bioactive compounds identified by HPLC techniques. While, compounds containing furan moieties, as well as levoglucosenone, isochiapin B, dotriacontane, 7-nonynoic acid and tert-hexadecanethiol, with different biological activities were identified by GC-MS. Additionally, inhibition of 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) scavenging was 79.25% at 2000 µg/mL, indicating its antioxidant activity with IC50 of 728.20 ± 1.04 µg/mL. The tested extract exhibited potential anticancer activity (58.90% toxicity) against HepG2 cells at 1000 µg/mL. Potential bacterial inhibition was observed mainly against Escherichia coli and Proteus vulgaris, followed by Staphylococcus aureus and Bacillus subtilis with a diameter of growth inhibition ranging from 13 to 24 mm. While weak activities were recorded for fungi Candida albicans (10 mm). The extract showed mild antiviral activity against human coronavirus 229E with a selective index (SI) of 10.4, but not against human H3N2 (SI of 0.67). The molecular docking study's energy ratings were in good promise with the experiment documents of antibacterial and antiviral activities. The findings suggest that D. caffra juice extract is a potential candidate for further experiments to assess its use as potential alternative therapeutic agent.


Asunto(s)
Antioxidantes , Salicaceae , Antibacterianos/análisis , Antibacterianos/farmacología , Antioxidantes/química , Antivirales/análisis , Antivirales/farmacología , Frutas/química , Humanos , Subtipo H3N2 del Virus de la Influenza A , Simulación del Acoplamiento Molecular , Extractos Vegetales/química
5.
Saudi J Biol Sci ; 25(2): 361-366, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29472791

RESUMEN

Prevention of food spoilage and food poisoning pathogens is usually achieved by use of chemical preservatives which have negative impacts including: human health hazards of the chemical applications, chemical residues in food & feed chains and acquisition of microbial resistance to the used chemicals. Because of such concerns, the necessity to find a potentially effective, healthy safer and natural alternative preservatives is increased. Within these texts, Plant extracts have been used to control food poisoning diseases and preserve foodstuff. Antimicrobial activity of five plant extracts were investigated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi using agar disc diffusion technique. Ethanolic extracts of Punica granatum, Syzygium aromaticum, Zingiber officinales and Thymus vulgaris were potentially effective with variable efficiency against the tested bacterial strains at concentration of 10 mg/ml while extract of Cuminum cyminum was only effective against S. aureus respectively. P. granatum and S. aromaticum ethanolic extracts were the most effective plant extracts and showed bacteriostatic and bactericidal activities against the highly susceptible strains of food borne pathogenic bacteria (S. aureus and P. aeruginosa) with MIC's ranged from 2.5 to 5.0 mg/ml and MBC of 5.0 and 10 mg/ml except P. aeruginosa which was less sensitive and its MBC reached to 12.5 mg/ml of S. aromaticum respectively. These plant extracts which proved to be potentially effective can be used as natural alternative preventives to control food poisoning diseases and preserve food stuff avoiding healthy hazards of chemically antimicrobial agent applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA