Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Appl Biomater Funct Mater ; 22: 22808000241236020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38462785

RESUMEN

OBJECTIVE: To investigate the Pinus halepensis extracts and determine its healing and antibacterial effects, and to evaluate the treatment of skin burns. METHODS: Aqueous and ethanolic extracts and topical based on Aleppo pine plant extracts were prepared. Thirty male and female Wistar rats were used to study the cutaneous toxicity of extracts from the bark of P. halepensis. The extracts' healing potential for burn wounds were also assessed by evaluating the clinical and macroscopic aspects of the wounds. The antibacterial activity of crude extracts of P. halepensis as well as its wound healing abilities was verified in this investigation. RESULTS: In animals with acute dermal toxicity, there were no signs of treatment-related toxicity or death. The extracts of these plants could be transformed into phytomedicines for the treatment of infected wounds. The results demonstrated that formulated ointments are successful in treating second-degree burns in rats and may be suitable for the short-term therapeutic treatment of second-degree burns. CONCLUSION: This study successfully answered our problem, regarding the efficacy of our extract for treating second-degree burns in rats. Further studies are needed to confirm these results by identifying the molecules responsible for these activities and examining their mechanism of action.


Asunto(s)
Quemaduras , Pinus , Ratas , Animales , Ratas Wistar , Cicatrización de Heridas , Quemaduras/tratamiento farmacológico , Antibacterianos/farmacología , Piel/lesiones
2.
Heliyon ; 9(11): e21222, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38053906

RESUMEN

Lavandula stoechas, a Mediterranean plant, renowned in traditional medicine for its health benefits, is also arousing strong interest associated with its essential oils (EOs) with promising therapeutic properties. The aim of this study was to analyze the chemical composition of the plant, as well as to study its major activities, including antioxidant, anti-diabetic, dermatoprotective, anti-inflammatory, and antibacterial effects, focusing on its major molecules. Using the GC-MS method, the main compounds identified in L. stoechas EO (LSEO) were fenchone (31.81 %) and camphor (29.60 %), followed by terpineol (13.14 %) and menthone (8.96 %). To assess their antioxidant activity, three in vitro methods were used (DPPH, FRAP, and ABTS). The results revealed that LSEO exhibited the best antiradical property (54 ± 62 µg/mL) according to the DPPH test, while fenchone demonstrated the highest antioxidant capacity (87 ± 92 µg/mL) in the FRAP test, and camphor displayed the highest antioxidant capacity (96 ± 32 µg/mL) in the ABTS test. However, these results were lower than those obtained by Trolox used as a reference. In addition, study also explored the anti-diabetic potential of LSEO and its major compounds by evaluating their inhibitory activity towards two digestive enzymes, α-glucosidase and α-amylase. Camphor (76.92 ± 2.43 µg/mL) and fenchone (69.03 ± 2.31 µg/mL) exhibited the best inhibitory activities for α-amylase and α-glucosidase assays, respectively. Interestingly, all elements of the study exerted activities superior to those of acarbose, regardless of the test performed. In contrast, the evaluation of the dermatoprotective potential was carried out in vitro by targeting two enzymes involved in cutaneous processes, tyrosinase and elastase. In this light, fenchone (53.14 ± 3.06 µg/mL) and camphor (48.39 ± 1.92 µg/mL) were the most active against tyrosinase and elastase, respectively. It should be noted that the effect of both molecules, as well as that of LSEO, ranged between 53.14 ± 3.06 and 97.45 ± 5.22 µg/mL, which was significantly lower than the standard, quercetin (IC50 of 246.90 ± 2 0.54 µg/mL) against tyrosinase. Furthermore, the anti-inflammatory potential of these elements has been studied by evaluating their ability to inhibit lipooxygenase (LOX), a class of enzymes involved in the inflammatory process in the human body. As a result, the LSEO demonstrated a remarkable effect with an IC50 of 6.34 ± 1.29 µg/mL, which was almost comparable to the standard, quercetin (IC50 = 3.93 ± 0.45 µg/mL). Concerning the antibacterial potential, we carried out a quantitative analysis of the various products tested, revealing a bactericidal activity of the LSEO against the strain L. monocytogenes ATCC 13932 at a minimum effective concentration (MIC = CMB = 0.25). Overall, LSEOs offer significant potential as a source of natural antioxidants, and antidiabetic and anti-inflammatory agents, as well as dermatoprotective and antibacterial compounds. Its major molecules, fenchone and camphor, showed promising activity in these areas of study, making it a valuable candidate for future research and development in the field of natural medicine.

3.
Adv Pharmacol Pharm Sci ; 2023: 2482544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36636465

RESUMEN

Calendula arvensis L. (Asteraceae) is a famous ornamental and medicinal plant widely distributed in Mediterranean countries and the southern region of Europe. This reputed species is widely used in traditional medicine in the treatment of many disorders and has various bioactivities, especially anti-inflammatory, antiviral, antimutagenic, antimicrobial, insecticidal, antioxidant, and immunomodulatory activities. The present review was conducted to provide a critical review of the comprehensive and current knowledge regarding C. arvensis species, in particular, its taxonomy and geographical distribution, botanical description, medicinal uses, phytochemical compounds, pharmacological properties, and toxicity investigations. The data collected on C. arvensis were obtained using different scientific research databases such as PubMed, SciFinder, SpringerLink, Web of Science, Science Direct, Google Scholar, Wiley Online, and Scopus. Phytochemical screening of different C. arvensis extracts and essential oils showed their richness in bioactive compounds, particularly in fatty acids, sterols, phenolics, flavonoids, saponins, tannins, alkaloids, and terpenoid compounds. The findings of this review showed that the pharmacological activities of C. arvensis confirm its importance and diversity as a traditional remedy for many diseases. This plant presents a wide range of bioactivities, namely, anti-inflammatory, antimicrobial, antitrypanosomial, antitumoral, antimutagenic, and immunomodulatory activities, as well as hemolytic properties and wound treatment. Nevertheless, pharmacokinetic validation and toxicological examinations are required to detect any possible toxicity for future clinical trials.

4.
Crit Rev Food Sci Nutr ; 63(28): 9187-9216, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35416738

RESUMEN

For persons who survive with progressive cancer, nutritional therapy and exercise may be significant factors to improve the health condition and life quality of cancer patients. Nutritional therapy and medications are essential to managing progressive cancer. Cancer survivors, as well as cancer patients, are mostly extremely encouraged to search for knowledge about the selection of diet, exercise, and dietary supplements to recover as well as maintain their treatment consequences, living quality, and survival of patients. A healthy diet plays an important role in cancer treatment. Different articles are studied to collect information and knowledge about the use of nutrients in cancer treatment as well as cancer prevention. The report deliberates nutrition and exercise strategies during the range of cancer care, emphasizing significant concerns during treatment of cancer and for patients of advanced cancer, but concentrating mostly on the requirements of the population of persons who are healthy or who have constant disease following their repossession from management. It also deliberates choice nutrition and exercise problems such as dietary supplements, food care, food selections, and weight; problems interrelated to designated cancer sites, and common questions about diet, and cancer survival. Decrease the side effects of medicines both during and after treatment.


Asunto(s)
Dieta , Neoplasias , Humanos , Suplementos Dietéticos , Estado Nutricional , Ejercicio Físico , Apoyo Nutricional , Neoplasias/terapia
5.
Curr Pharm Des ; 29(6): 407-414, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36567304

RESUMEN

Myrtenol (C10H16O) is a volatile compound belonging to the terpenoid family of monocyclic monoterpenes. It is one of the essential oils constituents of several aromatic plants, including the genera Myrtus, Tanacetum, Artemisia, Hyssopus, and Rhodiola. The oxidation of α-pinene can produce it. Several reports demonstrated the pharmacological properties of myrtenol, including its antioxidant, antibacterial, antifungal, antidiabetic, anxiolytic, and gastroprotective activities. In this review, we discussed and highlighted in depth the pharmacological activities, cellular and molecular, providing insight into the mechanisms of myrtenol. In light of this finding, the interesting biological activities and abundance of myrtenol in nature suggests its potential applications in medicinal settings in the fight against various diseases.


Asunto(s)
Aceites Volátiles , Extractos Vegetales , Humanos , Extractos Vegetales/farmacología , Aceites Volátiles/farmacología , Monoterpenos/farmacología , Antioxidantes/farmacología
6.
Cancers (Basel) ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36230494

RESUMEN

Despite the significant advances and mechanistic understanding of tumor processes, therapeutic agents against different types of cancer still have a high rate of recurrence associated with the development of resistance by tumor cells. This chemoresistance involves several mechanisms, including the programming of glucose metabolism, mitochondrial damage, and lysosome dysfunction. However, combining several anticancer agents can decrease resistance and increase therapeutic efficacy. Furthermore, this treatment can improve the effectiveness of chemotherapy. This work focuses on the recent advances in using natural bioactive molecules derived from phenolic compounds isolated from medicinal plants to sensitize cancer cells towards chemotherapeutic agents and their application in combination with conventional anticancer drugs. Dietary phenolic compounds such as resveratrol, gallic acid, caffeic acid, rosmarinic acid, sinapic acid, and curcumin exhibit remarkable anticancer activities through sub-cellular, cellular, and molecular mechanisms. These compounds have recently revealed their capacity to increase the sensitivity of different human cancers to the used chemotherapeutic drugs. Moreover, they can increase the effectiveness and improve the therapeutic index of some used chemotherapeutic agents. The involved mechanisms are complex and stochastic, and involve different signaling pathways in cancer checkpoints, including reactive oxygen species signaling pathways in mitochondria, autophagy-related pathways, proteasome oncogene degradation, and epigenetic perturbations.

7.
Biotechnol Genet Eng Rev ; : 1-30, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36123811

RESUMEN

Quinic acid is a cyclohexanecarboxylic acid contained in the extracts of several parts of medicinal plants including Haematocarpus validus, Hypericum empetrifolium, Achillea pseudoaleppica, Rumex nepalensis, Phagnalon saxatile subsp. saxatile, Coffea arabica, Ziziphus lotus L, and Artemisia annua L … etc. Currently, in vitro and in vivo pharmacological studies showed that quinic acid exhibits various biological activities, such as antioxidant, antidiabetic, anticancer activity, antimicrobial, antiviral, aging, protective, anti-nociceptive and analgesic effects. Indeed, QA possesses an important antibacterial effect which could be explained by the fact that this molecule modules the functions of ribosomes and the synthesis of aminoacyl-tRNAs, modifications the levels of glycerophospholipids and fatty acids and disruption of the oxidative phosphorylation pathway thereby causing interference with membrane fluidity. The antidiabetic activity of AQ is achieved by stimulation of insulin secretion via the mobilization of Ca2+ from intracellular reserves and the increase in the NAD(P)H/NAD(P)+ ratio. Its anticancer effect is through the promotion of apoptosis, inhibition of activator protein 1 (AP-1) and signaling pathways involving protein kinase C (PKC) and certain mitogen-activated protein kinases (MAPKs), resulting in the downregulation of matrix metallopeptidase 9 (MMP-9) expression. Therefore, this review describes the main research work carried out on the biological properties of AQ and the mechanism of action underlying some of these effects, as well as the investigations of the main pharmacokinetic studies.

8.
J Pharm Anal ; 12(1): 35-57, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35573886

RESUMEN

Moroccan medicinal plants exhibit several pharmacological properties such as antimicrobial, anticancer, antidiabetic, analgesic, and anti-inflammatory effects, which are related to the presence of numerous bioactive compounds, including phenolic acids, flavonoids, and terpenoids. In the present review, we systematically evaluate previously published reports on the anti-inflammatory and analgesic effects of Moroccan medicinal plants. The in vitro investigations revealed that Moroccan medicinal plants inhibit several enzymes related to inflammatory processes, whereas in vivo studies noted significant anti-inflammatory and analgesic effects as demonstrated using different experimental models. Various bioactive compounds exhibiting in vitro and in vivo anti-inflammatory and analgesic effects, with diverse mechanisms of action, have been identified. Some plants and their bioactive compounds reveal specific secondary metabolites that possess important anti-inflammatory effects in clinical investigations. Our review proposes the potential applications of Moroccan medicinal plants as sources of anti-inflammatory and analgesic agents.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35463088

RESUMEN

Mentha spicata, also called Mentha viridis, is a medicinal plant of the Lamiaceae family characterized by its potency to synthesize and secret secondary metabolites, essentially essential oils. Different populations use the aerial parts of this plant for tea preparation, and this tisane has shown several effects, according to ethnopharmacological surveys carried out in different areas around the world. These effects are attributed to different compounds of M. spicata, in which their biological effects were recently proved experimentally. Pharmacological properties of M. spicata extracts and essential oils were investigated for different health benefits such as antioxidant, anticancer, antiparasitic, antimicrobial, and antidiabetic effects. In vitro and in vivo studies showed positives effects that could be certainly related to different bioactive compounds identified in M. spicata. Indeed, volatile compounds seem to be efficient in inhibiting different microbial agents such as bacteria, fungi, and parasites through several mechanisms. Moreover, M. spicata exhibited, according to some studies, promising antioxidant, antidiabetic, anti-inflammatory, and anticancer effects, which show its potential to be used as a source for identifying natural drugs against cellular oxidative stress and its related diseases. Importantly, toxicological investigations of M. spicata show the safety of this species at different doses and several periods of use which justify its use in traditional medicines as tisane with tea. Here, we report, explore, and highlight the data published on M. spicata concerning its botanical description and geographical distribution, its phytochemical compounds, its pharmacological properties, and its toxicological investigations of M. spicata.

10.
Molecules ; 27(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268585

RESUMEN

Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity.


Asunto(s)
Percepción de Quorum
11.
Biomolecules ; 12(3)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35327559

RESUMEN

Cancer is a complex disease resulting from the genetic and epigenetic disruption of normal cells. The mechanistic understanding of the pathways involved in tumor transformation has implicated a priori predominance of epigenetic perturbations and a posteriori genetic instability. In this work, we aimed to explain the mechanistic involvement of epigenetic pathways in the cancer process, as well as the abilities of natural bioactive compounds isolated from medicinal plants (flavonoids, phenolic acids, stilbenes, and ketones) to specifically target the epigenome of tumor cells. The molecular events leading to transformation, angiogenesis, and dissemination are often complex, stochastic, and take turns. On the other hand, the decisive advances in genomics, epigenomics, transcriptomics, and proteomics have allowed, in recent years, for the mechanistic decryption of the molecular pathways of the cancerization process. This could explain the possibility of specifically targeting this or that mechanism leading to cancerization. With the plasticity and flexibility of epigenetic modifications, some studies have started the pharmacological screening of natural substances against different epigenetic pathways (DNA methylation, histone acetylation, histone methylation, and chromatin remodeling) to restore the cellular memory lost during tumor transformation. These substances can inhibit DNMTs, modify chromatin remodeling, and adjust histone modifications in favor of pre-established cell identity by the differentiation program. Epidrugs are molecules that target the epigenome program and can therefore restore cell memory in cancerous diseases. Natural products isolated from medicinal plants such as flavonoids and phenolic acids have shown their ability to exhibit several actions on epigenetic modifiers, such as the inhibition of DNMT, HMT, and HAT. The mechanisms of these substances are specific and pleiotropic and can sometimes be stochastic, and their use as anticancer epidrugs is currently a remarkable avenue in the fight against human cancers.


Asunto(s)
Epigénesis Genética , Neoplasias , Plantas Medicinales , Metilación de ADN , Epigenómica , Flavonoides , Histonas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Plantas Medicinales/química
12.
Food Res Int ; 154: 110979, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35337553

RESUMEN

Chenopodium album L., is a medicinal plant widely cultivated in Europe, North America, Iran, South Africa, Australia, South America, and Asia. This species is commonly used in folk medicine to treat many diseases such as cancer, viral infections, parasitic diseases, gastrointestinal disorders, as well as bacterial and fungal infections. The present review was carried out to highlight previous studies on C. album, including its botanical description, geographical distribution, genetic diversity, ecological variability, ethnomedicinal use, bioactive compounds, pharmacological properties, and toxicology. The data collected on C. album was generated using various scientific research databases such as SciFinder, PubMed, Google Scholar, SpringerLink, ScienceDirect, Web of Science, Scopus, and Wiley Online. In this review, the data presented focus on C. album to elucidate its ethnomedicinal use, pharmacological activities, and chemical composition in order to investigate the possible therapeutic pathways of the plant. Analysis of the findings showed that C. album has a capital power in various therapeutic uses such as antibacterial, antifungal, antiviral, antiparasitic, antipruritic, anticancer, antiulcer, antirheumatic, antidiabetic, antihyperlipidemic, antioxidant, and anti-inflammatory as well as other biological functions. Indeed, data on the chemical composition of the extracts and essential oils of this plant revealed its richness in secondary metabolites. The results of this paper prove that the pharmacological properties of C. album confirm its traditional importance in the international traditional pharmacopeia. This species notably exhibits various biological activities; antibacterial, antifungal, and antioxidant effects. However, toxicological investigations and pharmacokinetic validation are necessary in order to identify a possible toxicity of this plant for future clinical trials and to validate its bioavailability.


Asunto(s)
Antiinfecciosos , Chenopodium album , Antibacterianos , Antiinfecciosos/farmacología , Variación Genética , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química
13.
Artículo en Chino | WPRIM | ID: wpr-931230

RESUMEN

Moroccan medicinal plants exhibit several pharmacological properties such as antimicrobial,anticancer,antidiabetic,analgesic,and anti-inflammatory effects,which are related to the presence of numerous bioactive compounds,including phenolic acids,flavonoids,and terpenoids.In the present review,we systematically evaluate previously published reports on the anti-inflammatory and analgesic effects of Moroccan medicinal plants.The in vitro investigations revealed that Moroccan medicinal plants inhibit several enzymes related to inflammatory processes,whereas in vivo studies noted significant anti-inflammatory and analgesic effects as demonstrated using different experimental models.Various bioactive compounds exhibiting in vitro and in vivo anti-inflammatory and analgesic effects,with diverse mechanisms of action,have been identified.Some plants and their bioactive compounds reveal specific secondary metabolites that possess important anti-inflammatory effects in clinical investigations.Our review proposes the potential applications of Moroccan medicinal plants as sources of anti-inflammatory and analgesic agents.

14.
Biomolecules ; 11(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34944447

RESUMEN

Carvone is a monoterpene ketone contained in the essential oils of several aromatic and medicinal plants of the Lamiaceae and Asteraceae families. From aromatic plants, this monoterpene is secreted at different concentrations depending on the species, the parts used, and the extraction methods. Currently, pharmacological investigations showed that carvone exhibits multiple pharmacological properties such as antibacterial, antifungal, antiparasitic, antineuraminidase, antioxidant, anti-inflammatory, and anticancer activities. These studies were carried out in vitro and in vivo and involved a great deal of knowledge on the mechanisms of action. Indeed, the antimicrobial effects are related to the action of carvone on the cell membrane and to ultrastructural changes, while the anti-inflammatory, antidiabetic, and anticancer effects involve the action on cellular and molecular targets such as inducing of apoptosis, autophagy, and senescence. With its multiple mechanisms, carvone can be considered as natural compounds to develop therapeutic drugs. However, other investigations regarding its precise mechanisms of action as well as its acute and chronic toxicities are needed to validate its applications. Therefore, this review discusses the principal studies investigating the pharmacological properties of carvone, and the mechanism of action underlying some of these properties. Moreover, further investigations of major pharmacodynamic and pharmacokinetic studies were also suggested.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Monoterpenos Ciclohexánicos/farmacología , Animales , Antiinfecciosos/farmacocinética , Antiinflamatorios/farmacocinética , Antineoplásicos Fitogénicos/farmacocinética , Antioxidantes/farmacocinética , Autofagia , Membrana Celular/química , Supervivencia Celular/efectos de los fármacos , Monoterpenos Ciclohexánicos/química , Monoterpenos Ciclohexánicos/uso terapéutico , Etnofarmacología , Humanos , Aceites Volátiles/química , Aceites de Plantas/química
15.
Nutrients ; 13(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34835969

RESUMEN

Cancer is one of the most complex and systemic diseases affecting the health of mankind, causing major deaths with a significant increase. This pathology is caused by several risk factors, of which genetic disturbances constitute the major elements, which not only initiate tumor transformation but also epigenetic disturbances which are linked to it and which can induce transcriptional instability. Indeed, the involvement of epigenetic disturbances in cancer has been the subject of correlations today, in addition to the use of drugs that operate specifically on different epigenetic pathways. Natural molecules, especially those isolated from medicinal plants, have shown anticancer effects linked to mechanisms of action. The objective of this review is to explore the anticancer effects of alkaloids, terpenoids, quinones, and isothiocyanates.


Asunto(s)
Alcaloides/farmacología , Productos Biológicos/farmacología , Epigénesis Genética , Isotiocianatos/farmacología , Neoplasias/genética , Quinonas/farmacología , Terpenos/farmacología , Alcaloides/química , Productos Biológicos/química , Epigénesis Genética/efectos de los fármacos , Humanos , Isotiocianatos/química , Quinonas/química , Terpenos/química
16.
Antioxidants (Basel) ; 10(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34679688

RESUMEN

ROS (reactive oxygen species) are produced via the noncomplete reduction in molecular oxygen in the mitochondria of higher organisms. The produced ROS are placed in various cell compartments, such as the mitochondria, cytoplasm, and endoplasmic reticulum. In general, there is an equilibrium between the synthesis of ROS and their reduction by the natural antioxidant defense system, called the redox system. Therefore, when this balance is upset, the excess ROS production can affect different macromolecules, such as proteins, lipids, nucleic acids, and sugars, which can lead to an electronic imbalance than oxidation of these macromolecules. Recently, it has also been shown that ROS produced at the cellular level can affect different signaling pathways that participate in the stimulation of transcription factors linked to cell proliferation and, consequently, to the carcinogenesis process. Indeed, ROS can activate the pathway of tyrosine kinase, MAP kinase, IKK, NF-KB, phosphoinositol 3 phosphate, and hypoxia-inducible factor (HIF). The activation of these signaling pathways directly contributes to the accelerated proliferation process and, as a result, the appearance of cancer. In addition, the use of antioxidants, especially natural ones, is now a major issue in the approach to cancer prevention. Some natural molecules, especially phytochemicals isolated from medicinal plants, have now shown interesting preclinical and clinical results.

17.
Environ Sci Pollut Res Int ; 28(35): 47869-47903, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34308524

RESUMEN

It has recently been proven that epigenetic dysregulation is importantly involved in cell transformation and therefore induces cancerous diseases. The development of molecules called epidrugs, which target specifically different epigenetic modifications to restore cellular memory and therefore the treatment, became a real challenge currently. Currently, bioactive compounds of medicinal plants as epidrugs have been can identified and explored in cancer therapy. Indeed, these molecules can target specifically different epigenetic modulators including DNMT, HDAC, HAT, and HMT. Moreover, some compounds exhibit stochastic epigenetic actions on different pathways regulating cell memory. In this work, pharmacodynamic actions of natural epidrugs belonging to cannabinoids, carotenoids, chalcones, fatty acids, lignans, polysaccharides, saponins, secoiridoids, steroids, tannins, tanshinones, and other chemical classes we reported and highlighted. In this review, the effects of several natural bioactive compounds of epigenetic medications on cancerous diseases were highlighted. Numerous active molecules belonging to different chemical classes such as cannabinoids, carotenoids, fatty acids, lignans, polysaccharides, saponins, secoiridoids, steroids, tannins, and tanshinones are discussed in this review.


Asunto(s)
Lignanos , Neoplasias , Plantas Medicinales , Epigénesis Genética , Humanos , Fitoquímicos/farmacología
18.
Food Chem Toxicol ; 153: 112259, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33984423

RESUMEN

p-cymene also known as p-cymol or p-isopropyltoluene is an alkyl-substituted aromatic compound naturally occurring in essential oils (EOs) of various aromatic plants, including the genus of Artemisia, Protium, Origanum, and Thymus. It is related to the family of terpenes, especially monocyclic monoterpenes. p-cymene is also present in several food-based plants such as carrots, orange juice, grapefruit, tangerine, raspberries and several spices. Numerous studies have demonstrated the pharmacological properties of the monoterpenes p-cymene, including antioxidant, anti-inflammatory, antiparasitic, antidiabetic, antiviral, antitumor, antibacterial, and antifungal activities. The p-cymene has also been reported to act as an analgesic, antinociceptive, immunomodulatory, vasorelaxant and neuroprotective agent. Its anticancer effects are related to some mechanisms such as the inhibition of apoptosis and cell cycle arrest. In this review, we critically highlighted the in vitro and in vivo pharmacological properties of the p-cymene molecule, providing insight into its mechanisms of action and potential applications in drug discovery. In light of this finding, in-depth in vivo studies are strongly required to validate the safety and beneficial effects of the p-cymene molecule in human healthcare and industrial applications as a potential source of drug discovery.


Asunto(s)
Cimenos/farmacología , Cimenos/uso terapéutico , Animales , Línea Celular Tumoral , Humanos
19.
J Ethnopharmacol ; 265: 113318, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32882360

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Origanum majorana L., is an aromatic and medicinal plant distributed in different parts of Mediterranean countries. This species is widely used in traditional medicine for the treatment of many diseases such as allergies, hypertension, respiratory infections, diabetes, stomach pain, and intestinal antispasmodic. AIM OF THE REVIEW: This work reports previous studies on O. majorana concerning its taxonomy, botanical description, geographical distribution, traditional use, bioactive compounds, toxicology, and biological effects. MATERIALS AND METHODS: Different scientific data bases such as Web of Science, Scopus, Wiley Online, SciFinder, Google Scholar, PubMed, ScienceDirect, and SpringerLink were consulted to collect data about O. majorana. The presented data emphasis bioactive compounds, traditional uses, toxicological investigations, and biological activities of O. majorana. RESULTS: The findings of this work marked an important correlation between the traditional use of O. majorana as an anti-allergic, antihypertensive, anti-diabetic agent, and its biological effects. Indeed, pharmacological investigations showed that essential oils and extracts from O. majorana exhibit different biological properties, particularly; antibacterial, antifungal, antioxidant, antiparasitic, antidiabetic, anticancer, nephrotoxicity protective, anti-inflammatory, analgesic and anti-pyretic, hepatoprotective, and antimutagenic effects. Toxicological evaluation confirmed the safety and innocuity of this species and supported its medicinal uses. Several bioactive compounds belonging to different chemical family such as terpenoids, flavonoids, and phenolic acids were also identified in O. majorana. CONCLUSIONS: The results suggest that the pharmacological properties of O. majorana confirm its traditional uses. Indeed, O. majorana essential oils showed remarkable antimicrobial, antioxidant, anticancer, anti-inflammatory, antimutagenic, nephroprotective, and hepatoprotective activities. However, further investigations regarding the evaluation of molecular mechanisms of identified compounds against human cancer cell lines, inflammatory process, and microbial infections are needed to validate pharmacodynamic targets. The toxicological investigation of O. Majorana confirmed its safety and therefore encouraged pharmacokinetic evaluation tests to validate its bioavailability.


Asunto(s)
Medicina Tradicional , Origanum/química , Extractos Vegetales/farmacología , Animales , Etnofarmacología , Humanos , Fitoquímicos/efectos adversos , Fitoquímicos/farmacología , Extractos Vegetales/efectos adversos
20.
J Ethnopharmacol ; 268: 113661, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33276057

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pinus halepensis Mill., is a Mediterranean medicinal plant with numerous traditional applications such as anti-scarring, antiseptic, astringent, antifungal, and anti-tuberculosis. It is used against diarrhea, wounds, rheumatism, cough, gastrointestinal illnesses, hypertension, and hemorrhoids. AIM OF THE REVIEW: We critically summarized previous reports on the botanical, taxonomical, ecological, geographical distribution, phytochemical, and pharmacological results of P. halepensis Mill. MATERIALS AND METHODS: To gather data on P. halepensis Mill., different scientific search engines were consulted such as Google Scholar, Scopus, Wiley Online, Scifinder, Web of Science, ScienceDirect, SpringerLink, PubMed. The collected data on P. halepensis Mill., were organised according to ethnomedicinal use, phytochemistry, and pharmacology. RESULTS: Ethnomedicinal studies indicated that P. halepensis Mill., is used as a protective remedy against respiratory and digestive disorders, arterial hypertension, microbial infections. These medicinal uses vary based on the part used and regions. The extracts and essential oils of P. halepensis Mill., demonstrated several biological effects including antimicrobial, antidiabetic anti-inflammatory, cytotoxic, antiparasitic, and hepatoprotective. Traditional uses and biological effects of P. halepensis Mill., were attributed to the numerous molecules that belong to different chemical classes such as terpenoids, phenolic acids, flavonoids, fatty acids and steroids, aldehydes and ketones. CONCLUSIONS: In vitro and in vivo investigations of P. halepensis Mill., extracts and essential oils showed interesting pharmacological activities supporting the traditional use of this species. Previous reports indicated that P. halepensis Mill., extracts and their constituents exhibited potent antibacterial, antifungal, antioxidant, protective, anticoagulant, anti-hemolytic, and anti-inflammatory effects. Further investigation is needed to reveal the full biological spectra of P. halepensis Mill., extracts and essential oils (using in vivo models) and to validate their industrial applications as a food additive. However, in-depth studies are required to investigate the biological properties and molecular mechanisms of P. halepensis Mill., secondary metabolites in the management of diabetes mellitus and the prevention of the neurodegenerative disorders development such as Alzheimer's and Parkinson's disease. Studies exploring pharmacological effects of P. halepensis Mill., bioactive components such as the antimicrobial, anti-inflammatory, and antiparasitic drugs are required to validate the clinical use of these molecules. The safety of P. halepensis Mill., and its bioactive compounds should be also investigated by carrying out further pharmacokinetic and toxicological experiments.


Asunto(s)
Etnofarmacología/métodos , Medicina Tradicional/métodos , Fitoquímicos/uso terapéutico , Pinus , Extractos Vegetales/uso terapéutico , Animales , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA