Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(55): 117609-117623, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37872332

RESUMEN

Agents that will accelerate wound healing maintain their clinical importance in all aspects. The aim of this study is to determine the antimicrobial activity of zinc oxide nanoparticles (ZnO NPs) ZnO nanoparticles obtained by green synthesis from Capparis spinosa L. extract and their effect on in vitro wound healing. ZnO NPs were synthesized and characterized using Capparis spinosa L. extract. ZnO NPs were tested against nine ATCC-coded pathogen strains to determine antimicrobial activity. The effects of different doses (0.0390625-20 µg/mL) of NPs on cell viability were determined by MTT assay. The effect of ZnO NPs doses (0.0390625 µg/mL, 0.078125 µg/mL, 0.15625 µg/mL, 0.3125 µg/mL, 0.625 µg/mL, 1.25 µg/mL) that increase proliferation and migration on wound healing was investigated in an in vitro wound experiment. Cell culture medium obtained from the in vitro wound assay was used for biochemical analysis, and plate alcohol-fixed cells were used for immunohistochemical staining. It was determined that NPs formed an inhibition zone against the tested Gram-positive bacteria. The ZnO NPs doses determined in the MTT test provided faster wound closure in in-vitro conditions compared to the DMSO group. Biochemical analyses showed that inflammation and oxidative status decreased, while antioxidant levels increased in ZnO NPs groups. Immunohistochemical analyses showed increased expression levels of Bek/FGFR2, IGF, and TGF-ß associated with wound healing. The findings reveal the antimicrobial effect of ZnO nanoparticles obtained using Capparis spinosa L. extract in vitro and their potential applications in wound healing.


Asunto(s)
Antiinfecciosos , Capparis , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/química , Capparis/metabolismo , Nanopartículas/química , Cicatrización de Heridas , Antiinfecciosos/farmacología , Antiinfecciosos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
2.
Sci Rep ; 13(1): 3337, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849811

RESUMEN

Beans are an important plant species and are one of the most consumed legumes in human nutrition, especially as a protein, vitamin, mineral, and fiber source. Common bean (Phaseolus vulgaris L.) is a plant that also has an important role in natural nitrogen fixation. Currently, in vitro regeneration and micropropagation applications are limited in relation to genetic factors in bean Accordingly, there is great need to optimize micropropagation and tissue culture methods of the bean plant. To date, the effect of mammalian sex hormones (MSH) on in vitro conditions in P. vulgaris L. is poorly understood. This study examined the effects of different types of explants (embryo, hypocotyl, plumule, and radicle), MSH type (progesterone, 17 ß-estradiol, estrone, and testosterone), and MSH concentration (10-4, 10-6, 10-8 and 10-10 mmol L-1) on the responding explants induction rate (REI), viability of plantlets rate (VPR), shoot proliferation rate (SPR), root proliferation rate (RPR), and callus induction rate (CIR). The effects of mammalian sex hormones, concentrations, explant type, and their interactions were statistically significant (p ≤ 0.01) in all examined parameters. The best explants were embryo and plumule. Our results showed that the highest REI rate (100%) was recorded when 10-10 mmol L-1 of all MSH was applied to MS medium using the plumule explant. The highest VPR (100%) was obtained when 10-10 mmol L-1 of all MSH was applied to MS medium using the plumule explant. The highest root proliferation rates (77.5%) were recorded in MS medium supplemented with 10-8 mmol L-1 17ß-estradiol using embryo explant. The highest percentage of shoot-forming explants (100%) generally was obtained from embryo and plumule cultured in the MS culture medium with low MSH concentration. In addition, the highest CIR (100%) was obtained from embryo and plumule explant cultured in MS medium containing 10-10 mmol L-1 of all MSH types. In conclusion, we observed that mammalian sex hormones may be used in bean in vitro culture.


Asunto(s)
Callosidades , Phaseolus , Humanos , Animales , Verduras , Estradiol , Estrona , Mamíferos
3.
Plants (Basel) ; 11(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36079574

RESUMEN

Nanomaterials with unique and diverse physico-chemical properties are used in plant science since they improve plant growth and development and offer protection against biotic and abiotic stressors. Previous studies have explored the effects of such nanomaterials on different plant mechanisms, but information about the effects of nanomaterials on induced DNA methylation, genomic instability and LTR retrotransposon polymorphism in wheat is lacking. Therefore, the present study highlights the key role of nanoparticles in DNA methylation and polymorphism in wheat by investigating the effects of ZnO, CuO and γ-Fe3O4 nanoparticles (NPs) on mature embryo cultures of wheat (Triticum aestivum L.). Nanoparticles were supplemented with Murashige and Skoog (MS) basal medium at normal (1X), double (2X) and triple (3X) concentrations. The findings revealed different responses to the polymorphism rate depending on the nanoparticle type and concentration. Genomic template stability (GTS) values were used to compare the changes encountered in iPBS profiles. ZnO, CuO and γ-Fe3O4 NPs increased the polymorphism rate and cytosine methylation compared to the positive control while reducing GTS values. Moreover, non-γ-Fe3O4 NPs treatments and 2X ZnO and CuO NP treatments yielded higher polymorphism percentages in both MspI- and HpaII-digested CRED-iPBS assays and were thus classified as hypermethylation when the average polymorphism percentage for MspI digestion was considered. On the other hand, the 3X concentrations of all nanoparticles decreased HpaII and MspI polymorphism percentages and were thus classified as hypomethylation. The findings revealed that MS medium supplemented with nanoparticles had epigenetic and genotoxic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA