Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neural Eng ; 19(1)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35038687

RESUMEN

Objective.Electrical deep brain stimulation (DBS) is an established treatment for patients with drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may actually further disturb normal sleep patterns and sleep quality. Novel implantable devices capable of DBS and streaming of continuous intracranial electroencephalography (iEEG) signals enable detailed assessments of therapy efficacy and tracking of sleep related comorbidities. Here, we investigate the feasibility of automated sleep classification using continuous iEEG data recorded from Papez's circuit in four patients with drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus of thalamus (ANT).Approach.The iEEG recorded from HPC is used to classify sleep during concurrent DBS targeting ANT. Simultaneous polysomnography (PSG) and sensing from HPC were used to train, validate and test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and high frequency (>100 Hz).Main results.We show that it is possible to build a patient specific automated sleep staging classifier using power in band features extracted from one HPC iEEG sensing channel. The patient specific classifiers performed well under all thalamic DBS frequencies with an average F1-score 0.894, and provided viable classification into awake and major sleep categories, rapid eye movement (REM) and non-REM. We retrospectively analyzed classification performance with gold-standard PSG annotations, and then prospectively deployed the classifier on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in ambulatory patients living in their home environment.Significance.The ability to continuously track behavioral state and fully characterize sleep should prove useful for optimizing DBS for epilepsy and associated sleep, cognitive and mood comorbidities.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Trastornos del Sueño-Vigilia , Encéfalo , Estimulación Encefálica Profunda/métodos , Epilepsia/complicaciones , Hipocampo , Humanos , Estudios Retrospectivos , Trastornos del Sueño-Vigilia/complicaciones , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/terapia , Tálamo
2.
Sci Rep ; 11(1): 24250, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930926

RESUMEN

Chronic brain recordings suggest that seizure risk is not uniform, but rather varies systematically relative to daily (circadian) and multiday (multidien) cycles. Here, one human and seven dogs with naturally occurring epilepsy had continuous intracranial EEG (median 298 days) using novel implantable sensing and stimulation devices. Two pet dogs and the human subject received concurrent thalamic deep brain stimulation (DBS) over multiple months. All subjects had circadian and multiday cycles in the rate of interictal epileptiform spikes (IES). There was seizure phase locking to circadian and multiday IES cycles in five and seven out of eight subjects, respectively. Thalamic DBS modified circadian (all 3 subjects) and multiday (analysis limited to the human participant) IES cycles. DBS modified seizure clustering and circadian phase locking in the human subject. Multiscale cycles in brain excitability and seizure risk are features of human and canine epilepsy and are modifiable by thalamic DBS.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Epilepsia/prevención & control , Convulsiones/prevención & control , Tálamo/fisiología , Animales , Ritmo Circadiano , Perros , Electroencefalografía , Humanos , Riesgo
3.
Brain Behav ; 9(12): e01431, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31697455

RESUMEN

INTRODUCTION: While the clinical efficacy of deep brain stimulation (DBS) the treatment of motor-related symptoms is well established, the mechanism of action of the resulting cognitive and behavioral effects has been elusive. METHODS: By combining functional magnetic resonance imaging (fMRI) and DBS, we investigated the pattern of blood-oxygenation-level-dependent (BOLD) signal changes induced by stimulating the nucleus accumbens in a large animal model. RESULTS: We found that diffused BOLD activation across multiple functional networks, including the prefrontal, limbic, and thalamic regions during the stimulation, resulted in a significant change in inter-regional functional connectivity. More importantly, the magnitude of the modulation was closely related to the strength of the inter-regional resting-state functional connectivity. CONCLUSIONS: Nucleus accumbens stimulation affects the functional activity in networks that underlie cognition and behavior. Our study provides an insight into the nature of the functional connectivity, which mediates activation effect via brain networks.


Asunto(s)
Cognición/fisiología , Núcleo Accumbens/fisiología , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Estimulación Encefálica Profunda/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Animales , Conducción Nerviosa/fisiología , Sus scrofa , Porcinos , Tálamo/fisiología
4.
Neuroimage Clin ; 21: 101671, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30642762

RESUMEN

BACKGROUND AND OBJECTIVES: We assessed correlations between the resting state functional connectivity (RSFC) of different thalamic nuclei and seizure frequency in patients with drug-resistant medial temporal lobe epilepsy (mTLE). METHODS: Seventeen patients with mTLE and 17 sex-/age-/handedness-matched controls participated. A seed-based correlation method for the resting-state FMRI data was implemented to get RSFC maps of 70 thalamic nuclei seed masks. Group statistics for individual RSFC for subjects and seed masks were performed to obtain within-group characteristics and between-group differences with age covariates. A linear regression was applied to test whether seizure frequency correlated with thalamic nuclear RSFC with the whole brain in mTLE patients. RESULTS: RSFC of thalamic nuclei showed spatially distinguishable connectivity patterns that reflected principal inputs and outputs that were derived from priori anatomical knowledge. We found group differences between normal control and mTLE groups in RSFC for nuclei seeds located in various subdivisions of thalamus. The RSFCs in some of those nuclei were strongly correlated with seizure frequency. CONCLUSIONS: Mediodorsal thalamic nuclei may play important roles in seizure activity or in the regulation of neuronal activity in the limbic system. The RSFC of motor- and sensory-relay nuclei may help elucidate sensory-motor deficits associated with chronic seizure activity. RSFC of the pulvinar nuclei of the thalamus could also be a key reflection of symptom-related functional deficits in mTLE.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Procesamiento de Imagen Asistido por Computador , Lóbulo Temporal/fisiopatología , Tálamo/fisiopatología , Adulto , Epilepsia Refractaria/patología , Epilepsia Refractaria/fisiopatología , Epilepsia del Lóbulo Temporal/patología , Femenino , Lateralidad Funcional/fisiología , Humanos , Sistema Límbico/fisiopatología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Vías Nerviosas/fisiopatología , Convulsiones/fisiopatología , Lóbulo Temporal/patología , Tálamo/patología , Adulto Joven
5.
Neurosci Lett ; 622: 30-6, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27095588

RESUMEN

In rodent models of epilepsy, EEG implantation surgery is an essential modality to evaluate electrographic seizures. The inflammatory consequences of EEG electrode-implantation and their resultant effects on seizure susceptibility are unclear. We evaluated electrode-implantation in a two-hit model of epileptogenesis in C57BL/6 mice that included brief, recurrent febrile seizures (FS) at P14 and kainic acid induced seizures (KA-SZ) at P28. During KA-SZ, latencies to first electrographic and behavioral seizures, seizure severity, and KA dose sensitivity were measured. Mice that received subdural screw electrode implants at P25 for EEG monitoring at P28 had significantly shorter latencies to seizures than sham mice, regardless of early life seizure experience. Electrode-implanted mice were sensitive to low dose KA as shown by high mortality rate at KA doses above 10mg/kg. We then directly compared electrode-implantation and KA-SZ in seizure naive CX3CR1(GFP/+) transgenic C57BL/6 mice, wherein microglia express green fluorescent protein (GFP), to determine if microglia activation related to surgery was associated with the increased seizure susceptibility in electrode-implanted mice from the two-hit model. Hippocampal microglia activation, as demonstrated by percent area GFP signal and GFP positive cell counts, prior to seizures was indistinguishable between electrode-implanted mice and controls, but was significantly greater in electrode-implanted mice following seizures. Electrode-implantation had a confounding priming effect on the inflammatory response to subsequent seizures.


Asunto(s)
Epilepsia del Lóbulo Temporal/cirugía , Animales , Relación Dosis-Respuesta a Droga , Electrodos Implantados/efectos adversos , Electroencefalografía , Epilepsia del Lóbulo Temporal/etiología , Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/patología , Hipocampo/cirugía , Hipertermia Inducida , Inflamación/etiología , Inflamación/patología , Ácido Kaínico/administración & dosificación , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA