Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 5001, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322121

RESUMEN

Solanum nigrum, known as black nightshade, is a medicinal plant that contains many beneficial metabolites in its fruit. The molecular mechanisms underlying the synthesis of these metabolites remain uninvestigated due to limited genetic information. Here, we identified 47,470 unigenes of S. nigrum from three different tissues by de novo transcriptome assembly, and 78.4% of these genes were functionally annotated. Moreover, gene ontology (GO) analysis using 18,860 differentially expressed genes (DEGs) revealed tissue-specific gene expression regulation. We compared gene expression patterns between S. nigrum and tomato (S. lycopersicum) in three tissue types. The expression patterns of carotenoid biosynthetic genes were different between the two species. Comparison of the expression patterns of flavonoid biosynthetic genes showed that 9 out of 14 enzyme-coding genes were highly upregulated in the fruit of S. nigrum. Using CRISPR-Cas9-mediated gene editing, we knocked out the R2R3-MYB transcription factor SnAN2 gene, an ortholog of S. lycopersicum ANTHOCYANIN 2. The mutants showed yellow/green fruits, suggesting that SnAN2 plays a major role in anthocyanin synthesis in S. nigrum. This study revealed the connection between gene expression regulation and corresponding phenotypic differences through comparative analysis between two closely related species and provided genetic resources for S. nigrum.


Asunto(s)
Solanum lycopersicum , Solanum nigrum , Antocianinas , Frutas/genética , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum nigrum/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma
2.
J Ethnopharmacol ; 187: 302-12, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27131433

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Mexican oregano infusions have been traditionally used in México for the treatment of inflammation-related diseases, such as respiratory and digestive disorders, headaches and rheumatism, among others. Nevertheless, there is limited information regarding the phenolic compounds, terpenes and composition as well as biological activity of Mexican oregano. AIM OF THE STUDY: To determine the phenolic and terpene composition and to evaluate the anti-inflammatory potential of three species of Mexican oregano (Lippia graveolens (LG), Lippia palmeri (LP) and Hedeoma patens (HP)) in order to provide a scientific basis for their use. MATERIALS AND METHODS: We obtained methanol and chloroform extracts from dried oregano leaves of each species. We used LC-DAD-ESI-MS/MS and GC-MS to determine the phenolic and terpene profiles of the leaves, respectively. We evaluated anti-inflammatory potential by measuring the effect of Mexican oregano extracts on some pro-inflammatory mediators, such as nitric oxide (NO) and reactive oxygen species (ROS) using lipopolysaccharide(LPS)-stimulated RAW 264.7 macrophage cells and evaluating cyclooxygenase activity (COX-1, COX-2). RESULTS: Nine phenolic compounds (phenolic acids and flavonoids) and 22 terpenes (monoterpenes and sesquiterpenes) were detected in LG, LP and HP. We studied extracts from LG, LP and HP, and fractions from LG and LP in order to know their effect on some pro-inflammatory mediators. The phenolic and terpene extracts from LG, LP and HP exhibited significant inhibitory effect on ROS and NO production and mitochondrial activity in LPS-induced inflammation in RAW 264.7 macrophage cells. Nitric oxide production was also diminished by the terpene LG fraction LGF2 and the LP fractions LPF1, LPF2 and LPF3, confirming that both monoterpenes and sesquiterpenes are active compounds of oregano. Furthermore, the total extracts of LG, LP and HP exhibited non-selective inhibitions against the activity of the cyclooxygenases COX-1 and COX-2. CONCLUSIONS: Our results suggest that Lippia graveolens, Lippia palmeri and Hedeoma patens extracts have the potential to treat inflammatory diseases; their activity is mediated by polyphenols and terpenes. These findings support the claim for their traditional use in the treatment of inflammation-related diseases.


Asunto(s)
Antiinflamatorios/farmacología , Hedeoma , Lippia , Polifenoles/farmacología , Terpenos/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Hojas de la Planta , Polifenoles/análisis , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Terpenos/análisis
3.
J Agric Food Chem ; 64(9): 1899-909, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26872073

RESUMEN

Seventeen polyphenols (e.g, apigenin, genistein, and luteolin glycosides) and 11 lipophilic compounds (e.g., fatty acids, sterols, and terpenes) were detected by LC-MS/MS-ESI and GC-MS, respectively, in Jatropha platyphylla. Extracts from pulp, kernel, and leaves and fractions were studied to know their effect on some pro-inflammatory mediators. Phenolic and lipophilic extracts showed significant inhibitory effects on ROS and NO production while not affecting mitochondrial activity or superoxide generation rate in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. In addition, NO production was also diminished by lipophilic leaf fractions F1 and F2 with the latter fraction showing a greater effect and composed mainly of sterols and terpene. Furthermore, total extracts showed nonselective inhibitions against cyclooxygenase COX-1 and COX-2 activities. All together, these results suggest that J. platyphylla extracts have potential in treating inflammatory diseases and their activity is mediated by flavonoids and lipophilic compounds.


Asunto(s)
Antiinflamatorios/farmacología , Flavonoides/farmacología , Jatropha/química , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Animales , Inhibidores de la Ciclooxigenasa/farmacología , Macrófagos/fisiología , Ratones , Óxido Nítrico/biosíntesis , Fitoterapia , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Esteroles/farmacología , Terpenos/farmacología
4.
J Agric Food Chem ; 63(28): 6355-65, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26120869

RESUMEN

Twelve phenolic metabolites (nine ternatin anthocyanins and three glycosylated quercetins) were identified from the blue flowers of Clitoria ternatea by high-performance liquid chromatography diode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-ESI/MS(n)). Three anthocyanins not reported in this species before show fragmentation pattern of the ternatin class. Extracts were fractionated in fractions containing flavonols (F3) and ternatin anthocyanins (F4). In general, C. ternatea polyphenols showed anti-inflammatory properties in lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells with distinct molecular targets. Flavonols (F3) showed strong inhibition of COX-2 activity and partial ROS suppression. On the other hand, the ternatin anthocyanins (F4) inhibited nuclear NF-κB translocation, iNOS protein expression, and NO production through a non-ROS suppression mechanism. Accordingly, quercetin glycosides and ternatin anthocyanins from the blue flower petals of C. ternatea may be useful in developing drugs or nutraceuticals for protection against chronic inflammatory diseases by suppressing the excessive production of pro-inflammatory mediators from macrophage cells.


Asunto(s)
Antocianinas/farmacología , Clitoria/química , Flavonoides/farmacología , Flores/química , Inflamación/prevención & control , Quercetina/farmacología , Animales , Antiinflamatorios , Cromatografía Líquida de Alta Presión , Glicósidos/farmacología , Inflamación/inducido químicamente , Lipopolisacáridos , Ratones , Extractos Vegetales/química , Células RAW 264.7 , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA