Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
3 Biotech ; 12(12): 349, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36386565

RESUMEN

Patchouli is a prized tropical medicinal herb with broad-spectrum therapeutic importance. The present research work describes development of an efficient callus-mediated plant regeneration protocol along with associated germplasm portability system (via alginate-encapsulation). Using 1.5 mg/l α-naphthalene acetic acid (NAA) and 1.0 mg/l 2, 4-dichlorophenoxy acetic acid (2, 4-D), highly proliferative friable calli were produced that subsequently underwent organogenesis in combinatorial cytokinin treatment to yield multiple shoot clusters. The highest frequency of shoot formation was achieved using 1.5 mg/l NAA with 1.5 mg/l 6-benzylaminopurine (BAP) in Murashige and Skoog (MS) medium. In vitro-derived shoot tips were encapsulated with 3% sodium alginate and 100 mM CaCl2 solution. The encapsulated beads were germinated in MS media with various concentrations of polyamines, where the highest regeneration frequency was observed with 1.5 mg/l spermidine. The regenerated shoots were rooted in basal MS medium and were successfully acclimatized with 96% survival rate. Genetic homogeneity amongst the regenerated plantlets was validated using Start Codon Targeted polymorphism (SCoT) and CAAT box-derived polymorphism (CBDP) ascertaining a high degree of clonal fidelity. The essential oil (EO) profiling of the donor plant and the in vitro-derived plantlets revealed identical composition. Furthermore, the antibacterial activities of various tissue extracts and extracted EOs were evaluated against the opportunistic pathogens viz. Klebsiella pneumoniae (MTCC 109), Salmonella typhii (MTCC 733), Micrococcus luteus (MTCC 2470) and Staphylococcus aureus (MTCC 96). The minimum inhibitory concentration (MIC) ranged from 0.31 to 5.0 mg/ml and 2.5 to 5.0 mg/ml against Gram-positive and Gram-negative bacteria, respectively. Eventually, the present research provides a holistic insight into the rapid regeneration of quality planting material as well as pharmacological bioprospection of patchouli along with the scope of further qualitative improvement via genetic transformation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03302-3.

2.
Arch Microbiol ; 204(1): 99, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34964904

RESUMEN

Murraya paniculata (L.) Jack is commonly cultivated as ornamental plant in Assam and has been used as spice and phytomedicine traditionally for many healthcare purposes. The therapeutic potential and chemical constituents of the essential oil of M. paniculata leaf was investigated against several pathogenic microbial species and human cancer cell lines. 29 chemical compounds were identified by GC-MS analysis from the essential oil representing 97.62% of the oil. The major compound identified was caryophyllene (20.93%). Leaf essential oil exhibited promising antibacterial activity against Mycobacterium smegmatis (MIC = 4 µg/mL) and Pseudomonas aeruginosa (MIC = 4 µg/mL). Best anticancer activity of the oil was observed for HeLa cells (IC50 = 6.28 µg/mL). Further, scanning electron microscopic studies revealed that the oil kills micro-organisms with the deformation of cellular morphology on treatment of the oil. Thus, the essential oil of M. paniculata leaf can be an excellent alternative for development of new antimicrobials and anticancer chemotherapeutic agents for the pharmaceutical industries.


Asunto(s)
Antiinfecciosos , Murraya , Aceites Volátiles , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Aceites Volátiles/farmacología , Hojas de la Planta
3.
Phytother Res ; 35(9): 4632-4659, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33987899

RESUMEN

Prized medicinal spice true nutmeg is obtained from Myristica fragrans Houtt. Rest species of the family Myristicaceae are known as wild nutmegs. Nutmegs and wild nutmegs are a rich reservoir of bioactive molecules and used in traditional medicines of Europe, Asia, Africa, America against madness, convulsion, cancer, skin infection, malaria, diarrhea, rheumatism, asthma, cough, cold, as stimulant, tonics, and psychotomimetic agents. Nutmegs are cultivated around the tropics for high-value commercial spice, used in global cuisine. A thorough literature survey of peer-reviewed publications, scientific online databases, authentic webpages, and regulatory guidelines found major phytochemicals namely, terpenes, fatty acids, phenylpropanoids, alkanes, lignans, flavonoids, coumarins, and indole alkaloids. Scientific names, synonyms were verified with www.theplantlist.org. Pharmacological evaluation of extracts and isolated biomarkers showed cholinesterase inhibitory, anxiolytic, neuroprotective, anti-inflammatory, immunomodulatory, antinociceptive, anticancer, antimicrobial, antiprotozoal, antidiabetic, antidiarrhoeal activities, and toxicity through in-vitro, in-vivo studies. Human clinical trials were very few. Most of the pharmacological studies were not conducted as per current guidelines of natural products to ensure repeatability, safety, and translational use in human therapeutics. Rigorous pharmacological evaluation and randomized double-blind clinical trials are recommended to analyze the efficacy and therapeutic potential of nutmeg and wild nutmegs in anxiety, Alzheimer's disease, autism, schizophrenia, stroke, cancer, and others.


Asunto(s)
Myristica , Myristicaceae , Fitoquímicos , Extractos Vegetales , Etnofarmacología , Humanos , Medicina Tradicional , Myristica/química , Myristica/toxicidad , Myristicaceae/química , Myristicaceae/toxicidad , Fitoquímicos/farmacología , Fitoquímicos/toxicidad , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad
4.
Plants (Basel) ; 6(4)2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-29072582

RESUMEN

Liriope and Ophiopogon species have a long history of use as traditional medicines across East Asia. They have also become widely used around the world for ornamental and landscaping purposes. The morphological similarities between Liriope and Ophiopogon taxa have made the taxonomy of the two genera problematic and caused confusion about the identification of individual specimens. Molecular approaches could be a useful tool for the discrimination of these two genera in combination with traditional methods. Seventy-five Liriope and Ophiopogon samples from the UK National Plant Collections of Ophiopogon and Liriope were analyzed. The 5' end of the DNA barcode region of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcLa) was used for the discrimination of the two genera. A single nucleotide polymorphism (SNP) between the two genera allowed the development of discriminatory tests for genus-level identification based on specific PCR and high-resolution melt curve (HRM) assays. The study highlights the advantage of incorporating DNA barcoding methods into plant identification protocols and provides simple assays that could be used for the quality assurance of commercially traded plants and herbal drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA