RESUMEN
PURPOSE: There is an urgent need for treatments that prevent or delay development to advanced age-related macular degeneration (AMD). Drugs already on the market for other conditions could affect progression to neovascular AMD (nAMD). If identified, these drugs could provide insights for drug development targets. The objective of this study was to use a novel data mining method that can simultaneously evaluate thousands of correlated hypotheses, while adjusting for multiple testing, to screen for associations between drugs and delayed progression to nAMD. DESIGN: We applied a nested case-control study to administrative insurance claims data to identify cases with nAMD and risk-set sampled controls that were 1:4 variable ratio matched on age, gender, and recent healthcare use. PARTICIPANTS: The study population included cases with nAMD and risk set matched controls. METHODS: We used a tree-based scanning method to evaluate associations between hierarchical classifications of drugs that patients were exposed to within 6 months, 7 to 24 months, or ever before their index date. The index date was the date of first nAMD diagnosis in cases. Risk-set sampled controls were assigned the same index date as the case to which they were matched. The study was implemented using Medicare data from New Jersey and Pennsylvania, and national data from IBM MarketScan Research Database. We set an a priori threshold for statistical alerting at P ≤ 0.01 and focused on associations with large magnitude (relative risks ≥ 2.0). MAIN OUTCOME MEASURES: Progression to nAMD. RESULTS: Of approximately 4000 generic drugs and drug classes evaluated, the method detected 19 distinct drug exposures with statistically significant, large relative risks indicating that cases were less frequently exposed than controls. These included (1) drugs with prior evidence for a causal relationship (e.g., megestrol); (2) drugs without prior evidence for a causal relationship, but potentially worth further exploration (e.g., donepezil, epoetin alfa); (3) drugs with alternative biologic explanations for the association (e.g., sevelamer); and (4) drugs that may have resulted in statistical alerts due to their correlation with drugs that alerted for other reasons. CONCLUSIONS: This exploratory drug-screening study identified several potential targets for follow-up studies to further evaluate and determine if they may prevent or delay progression to advanced AMD.