Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Biol Macromol ; 133: 945-956, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31005690

RESUMEN

Abiotic stress induced by heavy metals retards the growth and development of plants. Therefore, it is essential to have an insight into the potential toxic effects of heavy metals. The present article investigates the effect of zinc and cadmium on the structure and function of garlic phytocystatin (GPhyCys). The cysteine proteinase inhibitory assay showed a reduction in the inhibitory activity upon binding with zinc and cadmium. UV-vis absorption spectroscopy revealed the complex formation of zinc and cadmium with garlic phytocystatin. Fluorescence quenching experiment confirmed the quenching of fluorophores upon binding of zinc and cadmium. Synchronous and 3-dimensional fluorescence spectroscopy suggest the alteration in the microenvironment around aromatic residues of garlic phytocystatin upon binding with the above metals. Circular dichroism showed a reduction in the alpha-helical content of native garlic phytocystatin. Scanning electron micrographs showed the morphological changes in the native garlic phytocystatin upon addition of zinc and cadmium. The observations confirmed the alteration in structure and conformation of garlic phytocystatin upon interaction with zinc and cadmium. It can be safely concluded that the high concentration of zinc and cadmium can alter the functioning of cysteine proteinase present in garlic and affects the growth and development of plants.


Asunto(s)
Cadmio/metabolismo , Cadmio/farmacología , Cistatinas/metabolismo , Ajo/metabolismo , Estrés Fisiológico/efectos de los fármacos , Zinc/metabolismo , Zinc/farmacología , Cistatinas/química , Ajo/efectos de los fármacos , Ajo/fisiología , Unión Proteica , Conformación Proteica/efectos de los fármacos
2.
Int J Biol Macromol ; 125: 1128-1139, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30578901

RESUMEN

Phytocystatins or plant cystatins belong to a group of thiol protease inhibitors present ubiquitously in living system. They play a crucial role in cellular protein turnover thereby showing involvement in a wide array of physiological processes in plants. With wide importance and tremendous potential applications in the fields of genetic engineering, medicine, agriculture, and food technology, it is imperative to identify and isolate such protease inhibitors from different cheap and easily available plant sources. Present study focuses on the isolation, purification and characterization of a cystatin like thiol protease inhibitor from the seeds of Brassica nigra (rai mustard) following a simple two-step method using ammonium sulphate fractionation (40-60%) and gel filtration chromatography on Sephacryl S-100HR column with 51.85% yield and 151.50 fold purification. Rai seed cystatin (RSC) gave a molecular mass of ~19.50 kDa as determined by SDS PAGE and gel filtration behaviour. Stokes radius and diffusion coefficient of RSC were 19.80 Šand 11.21 × 10-7 cm2 s-1 respectively. Kinetic analysis revealed a reversible and non-competitive mode of inhibition with RSC showing highest inhibition towards papain (Ki = 1.62 × 10-7 M) followed by ficin and bromelain. Purified RSC possessed an α helical content of 35.29% as observed by far-UV CD spectroscopy. UV, fluorescence, CD and FTIR spectral studies revealed a significant conformational alteration in one or both the proteins upon RSC-papain complex formation. Isothermal Titration Calorimetry (ITC) analysis further revealed the values for different thermodynamic parameters involved in complex formation, indicating the process to be enthalpically as well as entropically driven with forces involved in binding the proteins to be electrostatic in nature. Additionally binding stoichiometry (N) of 0.95 ±â€¯0.08 sites indicates that each molecule of RSC is surrounded by nearly one papain molecule.


Asunto(s)
Cistatinas/química , Cistatinas/aislamiento & purificación , Planta de la Mostaza/química , Péptido Hidrolasas/química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/aislamiento & purificación , Compuestos de Sulfhidrilo/química , Dominio Catalítico , Cistatinas/farmacología , Estabilidad de Medicamentos , Electroforesis en Gel de Poliacrilamida , Activación Enzimática , Hidrodinámica , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Inhibidores de Proteasas/farmacología , Análisis Espectral , Relación Estructura-Actividad , Termodinámica
3.
J Biomol Struct Dyn ; 37(15): 4120-4131, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30394179

RESUMEN

Oxyfluorfen (2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene) is a nitrophenyl ether herbicide. Phytocystatins are crucial plant proteins which regulate various physiological processes and are also responsible for maintaining protease-antiprotease balance within plants. Thus, the present article deciphers the interaction of oxyfluorfen with garlic phytocystatin (GPC) through various spectroscopic and calorimetric techniques. The cysteine proteinase inhibitory assay was done to assess the inhibitory action of GPC in the presence of oxyfluorfen. The GPC loses its inhibitory activity in the presence of oxyfluorfen. The complex formation of GPC-oxyfluorfen was shown by UV absorption spectroscopy. The intrinsic fluorescence experiment affirmed the quenching of GPC in the presence of oxyfluorfen. The Stern-Volmer quenching constant and binding constant was obtained as 6.89 × 103 M-1 and 9.72 × 103 M-1, respectively. Synchronous fluorescence showed the alteration in the microenvironment around tyrosine residues. 3D fluorescence suggested the perturbation in the polarity around aromatic residues. The isothermal titration experiment suggests that the interaction of oxyfluorfen with GPC is a thermodynamically favorable reaction. Secondary structure alteration of GPC in the presence of oxyfluorfen was studied by circular dichroism (CD). The CD result showed a reduction in the α-helical content of GPC on interaction with oxyfluorfen. Consequently, all these outcomes affirmed the formation of GPC-oxyfluorfen complex along with the structural and conformational alteration. This study identifies and signifies that the exposure of oxyfluorfen induces stress within the plant system. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Cistatinas/química , Ajo , Éteres Difenilos Halogenados/química , Calorimetría , Dicroismo Circular , Ajo/química , Estructura Molecular , Análisis Espectral
4.
Artículo en Inglés | MEDLINE | ID: mdl-29902773

RESUMEN

Intrinsic and extrinsic factors are responsible for the transition of soluble proteins into aggregated form. Trifluoroethanol is among such potent extrinsic factor which facilitates the formation of aggregated structure. It disrupts the interactive forces and destabilizes the native structure of the protein. The present study investigates the effect of trifluoroethanol (TFE) on garlic cystatin. Garlic cystatin was incubated with increasing concentration of TFE (0-90% v/v) for 4 h. Incubation of GPC with TFE induces structural changes thereby resulting in the formation of aggregates. Inactivation of garlic phytocystatin was confirmed by cysteine proteinase inhibitory activity. Garlic cystatin at 30% TFE exhibits native-like secondary structure and high ANS fluorescence, thus suggesting the presence of molten globule state. Circular dichroism and FTIR confirmed the transition of the native alpha-helical structure of garlic cystatin to the beta-sheet structure at 60% TFE. Furthermore, increased ThT fluorescence and redshift in Congo red absorbance assay confirmed the presence of aggregates. Rayleigh and turbidity assay was also performed to validate the aggregation results. Scanning electron microscopy was followed to analyze the morphological changes which confirm the presence of sheath-like structure at 60% TFE. The study sheds light on the conformational behavior of a plant protein when kept under stress condition induced by an extrinsic factor.


Asunto(s)
Cistatinas/química , Ajo/química , Proteínas de Plantas/química , Trifluoroetanol/química , Dicroismo Circular , Cistatinas/análisis , Cistatinas/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Agregado de Proteínas , Pliegue de Proteína
5.
Pestic Biochem Physiol ; 145: 66-75, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29482733

RESUMEN

Carbendazim is a broad spectrum benzimidazole fungicide which is used to ensure plants' protection from pest and pathogens' invasion. The present work describes the impact of carbendazim (CAR) on garlic phytocystatin (GPC) which is a crucial plant regulatory protein. Interaction of carbendazim with GPC has been investigated through various biophysical techniques viz. UV absorption, fluorescence spectroscopy, isothermal titration calorimetry, far-UV circular dichroism and FTIR spectroscopy which showed binding between them with consequent modulatory effects. Functional activity of GPC was monitored by the anti-papain inhibitory assay which suggests that incubation of GPC with the higher concentration of CAR disrupts the inhibitory function of GPC. UV spectroscopy confirmed the formation of GPC-CAR complex. Intrinsic fluorescence suggests binding of CAR to GPC which reflects the changes in microenvironment around tryptophan residues of GPC. Isothermal titration calorimetry suggests that interaction of CAR to GPC is an exothermic reaction. Secondary structure analysis was also performed which confirmed that binding of CAR decreases the alpha-helical content of GPC. Collectively, these results demonstrated that GPC exhibited significant structural and functional alteration upon interaction with carbendazim. Since GPC is involved in various regulatory processes, therefore, its structural or functional alteration may lead to disruption of physiological and biological balance within the plant. Hence, our study signifies that exposure of carbendazim to plant exerts physicochemical alteration within the plant.


Asunto(s)
Bencimidazoles/farmacología , Carbamatos/farmacología , Fungicidas Industriales/farmacología , Ajo/metabolismo , Proteínas de Plantas/metabolismo , Análisis Espectral/métodos , Bencimidazoles/metabolismo , Sitios de Unión , Calorimetría , Carbamatos/metabolismo , Fungicidas Industriales/metabolismo , Papaína/antagonistas & inhibidores , Plantas/microbiología , Relación Estructura-Actividad
6.
Int J Biol Macromol ; 106: 20-29, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28789961

RESUMEN

Cysteine proteinase inhibitors play an essential role in maintaining the proper functioning of all living cells by virtue of its thiol protease regulatory properties. Chemical denaturation of a new variant of cystatin super family has been studied by various biophysical techniques in order to characterize the unfolded and denatured state. Denaturation of garlic phytocystatin (GPC) has been investigated using urea and guanidine hydrochloride (GdnHCl). Different biophysical techniques such as intrinsic fluorescence, circular dichroism and FTIR exhibited an altered structure of garlic phytocystatin with increasing concentration of denaturant. The inhibitory activity of GPC decreases with increasing concentration of denaturant. Increased fluorescence intensity along with red shift reflects the unfolding of GPC at higher concentration of denaturant. GdnHCl induced unfolding showed presence of indiscernible intermediate as followed by ANS binding studies. However, denaturation by urea did not show any intermediates. Mid-point transition was observed at 4.7±0.1M urea and 2.32±0.1M GdnHCl. Circular dichroism and FTIR results indicate the 50% loss of secondary structure at 5M urea and 2.5M GdnHCl. This study provides intriguing insight into the possible alteration of structure, stability and function of GPC induced by urea and GdnHCl.


Asunto(s)
Cistatinas/química , Ajo/química , Guanidina/química , Urea/química , Acrilamida/química , Naftalenosulfonatos de Anilina/química , Cistatinas/aislamiento & purificación , Colorantes Fluorescentes/química , Desnaturalización Proteica , Pliegue de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Espectrometría de Fluorescencia
7.
J Biomol Struct Dyn ; 35(8): 1693-1709, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27212233

RESUMEN

Cystatins, known for their ubiquitous presence in mammalian system are thiol protease inhibitors serving important physiological functions. Here, we present a variant of cystatin isolated from brain of Capra hircus (goat) which is glycosylated but lacks disulphide bonds. Caprine brain cystatin (CBC) was isolated using alkaline treatment, ammonium sulphate fractionation (40-60%) and gel filtration chromatography on Sephacryl S-100HR column with an overall yield of 26.29% and 322-fold purification. The inhibitor gave a molecular mass of ~44 kDa as determined by SDS-PAGE and gel filtration behaviour. The Stokes radius and diffusion coefficient of CBC were 27.14 Å and 8.18 × 10-7 cm2 s-1, respectively. Kinetic data revealed that CBC inhibited thiol proteases reversibly and competitively, with the highest inhibition towards papain (Ki = 4.10 nM) followed by ficin and bromelain. CBC possessed 34.7% α-helical content as observed by CD spectroscopy. UV, fluorescence, CD and FTIR spectroscopy revealed significant conformational change upon CBC-papain complex formation. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic parameters - ΔH, ΔS, ΔG along with N (binding stoichiometry) for CBC-papain complex formation. Binding stoichiometry (N = .97 ± .07 sites) for the CBC-papain complex indicates that cystatin is surrounded by nearly one papain molecule. Negative ΔH (-5.78 kcal mol-1) and positive ΔS (11.01 cal mol-1 deg-1) values suggest that the interaction between CBC and papain is enthalpically as well as entropically favoured process. The overall negative ΔG (-9.19 kcal mol-1) value implies a spontaneous CBC-papain interaction.


Asunto(s)
Bromelaínas/química , Cistatinas/química , Inhibidores de Cisteína Proteinasa/química , Ficaína/química , Papaína/química , Animales , Encéfalo/metabolismo , Química Encefálica , Bromelaínas/antagonistas & inhibidores , Bromelaínas/metabolismo , Cistatinas/aislamiento & purificación , Cistatinas/metabolismo , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Inhibidores de Cisteína Proteinasa/metabolismo , Electroforesis en Gel de Poliacrilamida , Ficaína/antagonistas & inhibidores , Ficaína/metabolismo , Cabras , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Papaína/antagonistas & inhibidores , Papaína/metabolismo , Conformación Proteica en Hélice alfa , Especificidad por Sustrato , Termodinámica
8.
Int J Biol Macromol ; 94(Pt B): 819-826, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26751400

RESUMEN

In the present study a thiol proteinase inhibitor was isolated from buffalo kidney making use of ammonium sulphate precipitation and gel filtration chromatography on Sephacryl S-100HR column. Purified inhibitor is homogeneous as it displayed a single band in gel electrophoresis both under reducing and non-reducing environment and is of 65KDa as revealed by gel filtration and SDS PAGE. Kinetic studies revealed the presence of reversible accompanied with competitive mode of inhibition; showing maximum efficacy against papain (Ki=2.90×10-4). It was maximally active at pH 8.0 and was stable for a period of 30, 60 and 90 days at 37, 4 and -20°C respectively. Immunological studies confirmed its purity of epitopes as a single precipitin line is obtained in immunodiffusion. N-terminal analysis revealed that it shared a good homology with mouse kidney cystatin as well as with Human Cys C and Cys E thereby advocating its use as a model for various human oriented studies which targets how the kidney cystatin level varies in accordance with various drugs that are currently being used as a target for variety of diseases.


Asunto(s)
Cistatinas/química , Riñón/química , Papaína/química , Inhibidores de Proteasas/química , Compuestos de Sulfhidrilo/química , Secuencia de Aminoácidos , Animales , Bromelaínas/antagonistas & inhibidores , Bromelaínas/química , Búfalos , Cistatinas/inmunología , Cistatinas/aislamiento & purificación , Ficaína/antagonistas & inhibidores , Ficaína/química , Humanos , Concentración de Iones de Hidrógeno , Riñón/inmunología , Cinética , Ratones , Peso Molecular , Papaína/antagonistas & inhibidores , Inhibidores de Proteasas/inmunología , Inhibidores de Proteasas/aislamiento & purificación , Estabilidad Proteica , Alineación de Secuencia
9.
Int J Biol Macromol ; 95: 734-742, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27916569

RESUMEN

Phytocystatins are cysteine proteinase inhibitors present in plants. They play crucial role in maintaining protease-anti protease balance and are involved in various endogenous processes. Thus, they are suitable and convenient targets for genetic engineering which makes their isolation and characterisation from different sources the need of the hour. In the present study a phytocystatin has been isolated from garlic (Allium sativum) by a simple two-step process using ammonium sulphate fractionation and gel filtration chromatography on Sephacryl S-100HR with a fold purification of 152.6 and yield 48.9%. A single band on native gel electrophoresis confirms the homogeneity of the purified inhibitor. The molecular weight of the purified inhibitor was found to be 12.5kDa as determined by SDS-PAGE and gel filtration chromatography. The garlic phytocystatin was found to be stable under broad range of pH (6-8) and temperature (30°C-60°C). Kinetic studies suggests that garlic phytocystatins are reversible and non-competitive inhibitors having highest affinity for papain followed by ficin and bromelain. UV and fluorescence spectroscopy revealed significant conformational change upon garlic phytocystatin-papain complex formation. Secondary structure analysis was performed using CD and FTIR. Garlic phytocystatin possesses 33.9% alpha-helical content as assessed by CD spectroscopy.


Asunto(s)
Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/metabolismo , Ajo , Animales , Carbohidratos/análisis , Enfermedades Cardiovasculares/tratamiento farmacológico , Inhibidores de Cisteína Proteinasa/inmunología , Inhibidores de Cisteína Proteinasa/uso terapéutico , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Estabilidad Proteica , Estructura Secundaria de Proteína , Análisis Espectral , Compuestos de Sulfhidrilo/análisis , Temperatura
10.
J Mol Recognit ; 29(5): 223-31, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26748819

RESUMEN

Phytocystatins belong to the family of cysteine proteinases inhibitors. They are ubiquitously found in plants and carry out various significant physiological functions. These plant derived inhibitors are gaining wide consideration as potential candidate in engineering transgenic crops and in drug designing. Hence it is crucial to identify these inhibitors from various plant sources. In the present study a phytocystatin has been isolated and purified by a simple two-step procedure using ammonium sulfate saturation and gel filtration chromatography on Sephacryl S-100HR from Brassica alba seeds (yellow mustard seeds).The protein was purified to homogeneity with 60.3% yield and 180-fold of purification. The molecular mass of the mustard seed cystatin was estimated to be nearly 26,000 Da by sodium dodecyl sulfate polyacrylamide gel electrophoresis as well as by gel filtration chromatography. The stokes radius and diffusion coefficient of the mustard cystatin were found to be 23A° and 9.4 × 10(-7) cm(2) s(-1) respectively. The isolated phytocystatin was found to be stable in the pH range of 6-8 and is thermostable up to 60 °C. Kinetic analysis revealed that the phytocystatin exhibited non-competitive type of inhibition and inhibited papain more efficiently (K(i) = 3 × 10(-7) M) than ficin (K(i) = 6.6 × 10(-7) M) and bromelain (K(i) = 7.7 × 10(-7) M respectively). CD spectral analysis shows that it possesses 17.11% alpha helical content.


Asunto(s)
Cistatinas/aislamiento & purificación , Cistatinas/farmacología , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Inhibidores de Cisteína Proteinasa/farmacología , Sinapis/metabolismo , Bromelaínas/antagonistas & inhibidores , Cromatografía en Gel , Dicroismo Circular , Cistatinas/química , Inhibidores de Cisteína Proteinasa/química , Ficaína/antagonistas & inhibidores , Peso Molecular , Papaína/antagonistas & inhibidores , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Estructura Secundaria de Proteína , Semillas/metabolismo
11.
Appl Biochem Biotechnol ; 171(3): 667-75, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23881780

RESUMEN

Regulation of the cysteine protease activity is imperative for proper functioning of the various organ systems. Elevated activities of cysteine proteinases due to impaired regulation by the endogenous cysteine proteinase inhibitors (cystatins) have been linked to liver malignancies. To gain an insight into these regulatory processes, it is essential to purify and characterise the inhibitors, cystatins. Present study was undertaken to purify the inhibitor from the liver. The purification was accomplished in four steps: alkaline treatment, ammonium sulphate fractionation, acetone precipitation and gel filtration column (Sephacryl S-100 HR). The eluted protein exhibited inhibitory activity towards papain, and its purity was further reaffirmed using western blotting and immunodiffusion. The purified inhibitor (liver cystatin (LC)) was stable in the pH range of 6-8 and temperature up to 45 °C. In view of the significance of kinetics parameters for drug delivery, the kinetic parameters of liver cystatin were also determined. LC showed the greatest affinity for papain followed by ficin and bromelain. UV and fluorescence spectroscopy results showed that binding of LC with thiol proteases induced changes in the environment of aromatic residues. Recent advances in the field of proteinase inhibitors have drawn attention to the possible use of this collected knowledge to control pathologies.


Asunto(s)
Cistatinas/aislamiento & purificación , Animales , Cistatinas/química , Cistatinas/metabolismo , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Inhibidores de Cisteína Proteinasa/metabolismo , Cabras , Concentración de Iones de Hidrógeno , Cinética , Hígado/metabolismo
12.
Protein Pept Lett ; 18(2): 210-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21054269

RESUMEN

UNLABELLED: Cystatins are thiol proteinase inhibitors ubiquitously present in mammalian body and serve various important physiological functions. AIMS: To purify and characterize Thiol protease inhibitor from buffalo brain and to compare its properties with respect to tissue and organ difference from other mammalian cystatins. MAIN METHODS: Inhibitor has been isolated and purified using alkaline treatment; ammonium sulphate fractionation and gel filtration chromatography on Sephadex G-75 with a % yield of 64.13 and fold purification of 384.72.The inhibitor was studied by U.V and fluorescence spectroscopy. Papain inhibitory activity was measured using casein as substrate. KEY FINDING: The molecular weight of the buffalo brain cystatin (BC), determined by gel filtration and SDS PAGE came out to be 43.6 KDa and 44.20 KDa respectively. BC was found to be stable in broad pH and temperature range. The inhibitor was devoid of any sulphydryl group and carbohydrate content. These properties led to conclusion that BC is variant of type-I cystatin. The stokes radius and diffusion coefficient of the inhibitor were found to be 27 A° and 8.1 x 10⁻7 cm²/sec respectively, the f/f0 ratio was 1.12 signifying that purified cystatin is nearly globular in shape. Kinetic data revealed binding stoichiometry of BC with papain as 1:1. The Ki value with papain ficin and bromelain were found to be 1, 1.85 and 2.25 nM respectively suggesting that cystatin has higher affinity with papain as compared to ficin and bromelain. The fluorescence and UV spectra of BC- papain complex showed significant conformational changes indicative of perturbation in the micro environment of aromatic amino acid residues on the formation of complex. SIGNIFICANCE: This work proliferates our knowledge about cystatins of the mammalian brain on the basis of their physiochemical properties.


Asunto(s)
Cistatinas/química , Cistatinas/aislamiento & purificación , Animales , Encéfalo , Búfalos , Cistatinas/farmacología , Inhibidores de Cisteína Proteinasa
13.
Biochemistry (Mosc) ; 74(7): 781-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19747099

RESUMEN

In the present study, two molecular forms of goat lung cystatin (GLC), I and II, were purified to homogeneity by a two-step procedure including ammonium sulfate precipitation (40-60%) and ion exchange chromatography. The inhibitor forms migrated as single bands under native and SDS-PAGE with and without reducing agent giving molecular mass of 66.4 and 76.4 kDa, respectively. GLC-I possesses 0.07% and GLC-II 2.3% carbohydrate content and no -SH groups. GLC-I showed greater affinity for papain than for ficin and bromelain. Immunological studies showed that the inhibitor was pure and there was cross reactivity between anti-GLC-I serum and goat brain cystatin. Both inhibitor forms were stable in the pH range of 3-10 and up to 75 degrees C. GLC-I was found to possess 49% alpha-helical structure by CD spectroscopy. The inhibitor-papain complexes showed conformational changes as invoked by UV and fluorescence spectroscopic studies.


Asunto(s)
Cistatinas/química , Cistatinas/aislamiento & purificación , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/aislamiento & purificación , Cabras/metabolismo , Pulmón/química , Animales , Cistatinas/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Cinética , Pulmón/metabolismo , Peso Molecular , Estabilidad Proteica
14.
Indian J Exp Biol ; 44(9): 745-8, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16999030

RESUMEN

Oral administration of ethanol extract of N. sativa seeds (300 mg/kg body weight/day) to streptozotocin induced diabetic rats for 30 days significantly reduced the elevated levels of blood glucose, lipids, plasma insulin and improved altered levels of lipid peroxidation products (TBARS and hydroperoxides) and antioxidant enzymes like catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase in liver and kidney. The results confirm the antidiabetic activity of N. sativa seeds extract and suggest that because of its antioxidant effects its administration may be useful in controlling the diabetic complications in experimental diabetic rats.


Asunto(s)
Diabetes Mellitus Experimental , Hipoglucemiantes/uso terapéutico , Nigella sativa/química , Extractos Vegetales/uso terapéutico , Animales , Antioxidantes/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Semillas/química
15.
Protein J ; 24(2): 95-102, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16003951

RESUMEN

High molecular weight kininogen (HMWK) and low molecular weight kininogen (LMWK) have been purified from sheep (Avis Arias) plasma in three steps involving ammonium sulphate precipitation, column chromatography on Sephacryl-300HR and ion exchange chromatography on DEAE cellulose. HMWK gave a single band on native and SDS-PAGE with a molecular weight corresponding to 280 kDa. Under reducing conditions purified HMWK was again resolved to a single band with molecular weight corresponding to 140 kDa indicative of its dimeric nature. LMWK was resolved into two isoforms named as LMWK1 and LMWK2, with an apparent molecular weight of 68 kDa. The yield of HMWK, LMWK1 and 2 was about 8.1, 5.63 and 10.65 respectively. HMWK, LMWK1 and 2 strongly inhibited activities of ficin and papain but not of trypsin, chymotrypsin and bromelain. Ki values estimated for HMWK with papain and ficin was 0.8 and 0.6 nM respectively. Ki values estimated for LMWK1 and 2 with papain were 2.40 and 2.00 nM respectively. Binding of HMWK, LMWK1 and 2 to activated papain were accompanied by pronounced changes in secondary and tertiary structure that are compatible with perturbations of environment of aromatic residues.


Asunto(s)
Quininógenos/aislamiento & purificación , Animales , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Cinética , Quininógenos/sangre , Peso Molecular , Oxidación-Reducción , Ovinos , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Temperatura
16.
Indian J Exp Biol ; 42(7): 691-7, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15339034

RESUMEN

Post fish oil(n-3 fatty acids) treatment (5mg/kg/day for 12 days) was effective in bringing the reversal of tobramycin (160mg/kg/day,ip for 12 days) induced nephrotoxicity in albino rats as was evident by normal urea, creatinine, cholesterol and inorganic phosphate levels in the serum of the treatment group compared with group receiving tobramycin only. The return of normal levels of alkaline and acid phosphatase in kidney homogenates of post fish oil treatment group also indicated the beneficial effect of dietary n-3 fatty acids(fish oil) more than n-6 fatty acids(olive oil).The results suggest that oral supplements of dietary n-3 fatty acids (fish oil) for nearly two weeks after tobramycin exposure is more beneficial than n-6 fatty acids (olive oil) as it results in reversal of nephrotoxicity induced by tobramycin.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Riñón/efectos de los fármacos , Tobramicina/toxicidad , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Riñón/fisiopatología , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA