Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Opt ; 58(16): 4560-4568, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31251272

RESUMEN

High-accuracy spot target detection based on a complementary metal-oxide semiconductor (CMOS) image sensor, such as astronomy magnitude, medicine, and astronomy photometrics, needs accurate pixel response. Because pixels have different silicon structures and read outputting, each pixel has non-uniformity response with specific illumination. The flat-field correction of a CMOS image sensor is crucial before image processing. In this work, a flat-field model and correction method based on spot scale areas of CMOS image sensor pixel response are proposed. Compared with traditional full-plane calibration, this method aims at spot areas to fit most selected normal pixels' mean response curve with different light intensities and exposure times, which can guarantee spot imaging areas with higher accurate pixel response. Finally, the accuracy of this flat-field correction method is evaluated by the influence on spot target extraction accuracy. The experimental results indicate that using this flat-field correction method can decrease the non-uniform variance from 7.34 (LSB/10 bit) to 1.91 (LSB/10 bit) (improved by 74.1%) and reduce the noise effect on spot extraction accuracy, which improves it from 0.3453 pixel to 0.0116 pixel (1σ). The proposed approach solves the problem of non-uniform pixel response and improves imaging SNR for high-accuracy spot target localization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA