Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbiol Res ; 271: 127371, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37011510

RESUMEN

The establishment of symbiotic relationship between arbuscular mycorrhizal fungi (AMF) and roots is a mutually beneficial process and plays an important role in plant succession in ecosystems. However, there is less understanding of information about the AMF community in roots under vegetation succession on a large regional scale, especially the spatial variation in the AMF community and its potential ecological functions. Here, we elucidated the spatial variations in root AMF community structure and root colonization along a distribution pattern of four zonal Stipa species in arid and semiarid grassland systems and explored key factors regulating AMF structure and mycorrhizal symbiotic interactions. Four Stipa species established a symbiosis with AMF, and annual mean temperature (MAT) and soil fertility were the main positive and negative driving factors of AM colonization, respectively. The Chao richness and Shannon diversity of AMF community in the root system of Stipa species tended to increase firstly from S. baicalensis to S. grandis and then decreased from S. grandis to S. breviflora. While evenness of root AMF and root colonization showed a trend of increasing from S. baicalensis to S. breviflora, and biodiversity was principally affected by soil total phosphorus (TP), organic phosphorus (Po) and MAT. It is emphasized that Stipa species have certain dependence on AMF, especially in a warming environment, and the root AMF community structure among the four Stipa taxa was different. Additionally, the composition and spatial distribution of root AMF in host plants varied with MAT, annual mean precipitation (MAP), TP and host plant species. These results will broaden our understanding of the relationship between plant and AMF communities and their ecological role, and provide basic information for the application of AMF in the conservation and rehabilitation of forage plants in degraded semiarid grasslands.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Ecosistema , Raíces de Plantas/microbiología , Microbiología del Suelo , Hongos/fisiología , Plantas/microbiología , Poaceae , Suelo/química , Fósforo
2.
J Environ Manage ; 316: 115193, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35550954

RESUMEN

To explore the diversity and distribution characteristics of soil arbuscular mycorrhizae fungi (AMF) communities in the soft sandstone area, thirteen arsenic sandstone rock samples were collected from three planting plots (SI, SII and SIII) and one bare control plot (CK), separately. The sampling locations are as follows: the top of the slope (denoted by the number 1), sunny slope (2), shady slope (3) and gully bottom (4). These samples were then tested with an Illumina HiSeq PE250 high-throughput sequencing platform. Experimental results show that the SIII4 sample (from the gully bottom of the SIII plot) has the highest moisture content of 9.1%, while the CK sample in the control plot has lowest moisture content. SI2 has the highest pH of 9.58 and CK has the lowest pH of 8.73. SII1 has the highest available phosphorus (AP) content of 9.61 mg/kg, while SII3 has the lowest AP content of 2.29 mg/kg. Furthermore, SI2 has the highest NH4-N content of 11.24 mg/kg, while SII1 has the lowest NH4-N of 4.09 mg/kg. SII1 has the highest available potassium (AK) content of 48.92 mg/kg and CK has the lowest AK content of 1.82 mg/kg. In the observed-species index reflecting AMF genetic diversity, SI1 differences significantly from SII4 and SIII3 (P < 0.05). In the Shannon index, SI1 is significantly different from SI2, SI3, SI4; SII2 is significantly different from SII3; SI2, SI4, SII1 and SII3 are quite different from CK (P < 0.05). The dominant genera of AMF in these plots include Glomus (17.24%-65.53%), Scutellospora (0.04%-67.38%), Septoglomus (2.83%-43.03%) and Kamienskia (0.64%-46.38%). The dominant genera of AMF vary significantly between sunny slope and shady slope. Positive correlation exists between soil NH4-N and the AM fungal community structure. There are prominent positive correlations exist among genetic diversity index chao1, observed-species, pH and AP (P < 0.05), and obviously negative correlation between observed species and AK (P < 0.05). The research findings on the distribution characteristics of AM fungus community in the arsenic sandstone plot and their relationship with environmental factors can help with arsenic sandstone management in other similar areas.


Asunto(s)
Arsénico , Glomeromycota , Micobioma , Micorrizas , Hongos/genética , Micorrizas/genética , Fósforo , Suelo/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA