Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Psychiatry ; 23(3): 648-657, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28070121

RESUMEN

Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.


Asunto(s)
Hormona Liberadora de Corticotropina/genética , Plasticidad Neuronal/genética , Proteínas Represoras/genética , Animales , Animales Recién Nacidos/metabolismo , Animales Recién Nacidos/psicología , Cromatina/metabolismo , Epigénesis Genética/genética , Fármacos actuantes sobre Aminoácidos Excitadores/metabolismo , Femenino , Humanos , Hipotálamo , Masculino , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Represoras/metabolismo , Resiliencia Psicológica , Factores de Transcripción/genética , Transcripción Genética
2.
Mol Psychiatry ; 19(7): 811-22, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24589888

RESUMEN

The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress.


Asunto(s)
Región CA3 Hipocampal/patología , Trastornos de la Memoria/patología , Estrés Psicológico/patología , Sinapsis/patología , Amígdala del Cerebelo/fisiología , Animales , Región CA3 Hipocampal/fisiopatología , Corticosterona/sangre , Hipotálamo/fisiología , Masculino , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/fisiopatología , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología , Reconocimiento en Psicología , Núcleos Septales/fisiología , Estrés Psicológico/complicaciones , Tálamo/fisiología
3.
Neuroscience ; 154(3): 1132-42, 2008 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-18501521

RESUMEN

BACKGROUND: Early-life emotional stress may be associated with affective and cognitive disorders later in life, yet satisfactory animal models for studying the underlying mechanisms are limited. Because maternal presence and behavior critically influence molecular and behavioral stress responses in offspring, we sought to create a model of dysfunctional, fragmented maternal nurturing behavior that would, in turn, provoke chronic early-life stress in the offspring. METHODS: Sprague-Dawley rat dams' nursing and nurturing behaviors were altered by limiting their ability to create satisfactory nests during postpartum days 2-9. Maternal behavior was observed throughout the diurnal cycle, and the frequency and duration of nurturing behaviors were scored. In addition, potential stress and anxiety of the dams were assessed using behavioral, molecular and hormonal measures. RESULTS: Both the quantity and the quality of dams' care of their pups were profoundly influenced by restriction of nesting materials in their cages: licking/grooming activities decreased and the frequency of leaving the pups increased, resulting in fragmented interactions between the dams and pups. The abnormal activity patterns of the dams were accompanied by increased anxiety-like behavior in the open field, but not in the elevated plus maze tests. Additionally, dams' plasma corticosterone levels and adrenal weights were augmented, suggesting chronic stress of these dams. By the end of the limited-nesting, stress-inducing period, hypothalamic corticotropin releasing hormone (CRH) mRNA expression was reduced in the limited-nesting dams, while arginine-vasopressin (AVP) mRNA levels were not significantly affected. CONCLUSION: Limiting dams' ability to construct a nest for their pups leads to an abnormal repertoire of nurturing behaviors, possibly as a result of chronic stress and mild anxiety of the dams. Because the fragmented and aberrant maternal behavior provoked chronic stress in the pups, the limited-nesting paradigm provides a useful tool for studying the mechanisms and consequences of such early-life stress experience in the offspring.


Asunto(s)
Conducta Materna/fisiología , Comportamiento de Nidificación/fisiología , Estrés Psicológico/psicología , Animales , Arginina Vasopresina/metabolismo , Peso Corporal/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Densitometría , Ambiente , Femenino , Hipotálamo/metabolismo , Hibridación in Situ , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/fisiopatología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/fisiopatología
4.
Endocrinology ; 142(1): 89-97, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11145570

RESUMEN

Early-life experiences, including maternal interaction, profoundly influence hormonal stress responses during adulthood. In rats, daily handling during a critical neonatal period leads to a significant and permanent modulation of key molecules that govern hormonal secretion in response to stress. Thus, hippocampal glucocorticoid receptor (GR) expression is increased, whereas hypothalamic CRH-messenger RNA (mRNA) levels and stress-induced glucocorticoid release are reduced in adult rats handled early in life. Recent studies have highlighted the role of augmented maternal sensory input to handled rats as a key determinant of these changes. However, the molecular mechanisms, and particularly the critical, early events leading from enhanced sensory experience to long-lasting modulation of GR and CRH gene expression, remain largely unresolved. To elucidate the critical primary genes governing this molecular cascade, we determined the sequence of changes in GR-mRNA levels and in hypothalamic and amygdala CRH-mRNA expression at three developmental ages, and the temporal relationship between each of these changes and the emergence of reduced hormonal stress-responses. Down-regulation of hypothalamic CRH-mRNA levels in daily-handled rats was evident already by postnatal day 9, and was sustained through postnatal days 23 and 45, i.e. beyond puberty. In contrast, handling-related up-regulation of hippocampal GR-mRNA expression emerged subsequent to the 23rd postnatal day, i.e. much later than changes in hypothalamic CRH expression. The hormonal stress response of handled rats was reduced starting before postnatal day 23. These findings indicate that early, rapid, and persistent changes of hypothalamic CRH gene expression may play a critical role in the mechanism(s) by which early-life experience influences the hormonal stress-response long-term.


Asunto(s)
Envejecimiento/fisiología , Hormona Liberadora de Corticotropina/genética , Regulación del Desarrollo de la Expresión Génica , Hipocampo/fisiología , Hipotálamo/fisiología , Estrés Psicológico/fisiopatología , Transcripción Genética , Amígdala del Cerebelo/crecimiento & desarrollo , Amígdala del Cerebelo/fisiología , Animales , Frío , Femenino , Manejo Psicológico , Hipocampo/crecimiento & desarrollo , Hipotálamo/crecimiento & desarrollo , Conducta Materna , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Restricción Física , Estrés Psicológico/genética
5.
Neuroscience ; 101(3): 571-80, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11113306

RESUMEN

Corticotropin-releasing hormone, a major neuromodulator of the neuroendocrine stress response, is expressed in the immature hippocampus, where it enhances glutamate receptor-mediated excitation of principal cells. Since the peptide influences hippocampal synaptic efficacy, its secretion from peptidergic interneuronal terminals may augment hippocampal-mediated functions such as learning and memory. However, whereas information regarding the regulation of corticotropin-releasing hormone's abundance in CNS regions involved with the neuroendocrine responses to stress has been forthcoming, the mechanisms regulating the peptide's levels in the hippocampus have not yet been determined. Here we tested the hypothesis that, in the immature rat hippocampus, neuronal stimulation, rather than neuroendocrine challenge, influences the peptide's expression. Messenger RNA levels of corticotropin-releasing hormone in hippocampal CA1, CA3 and the dentate gyrus, as well as in the hypothalamic paraventricular nucleus, were determined after cold, a physiological challenge that activates the hypothalamic pituitary adrenal system in immature rats, and after activation of hippocampal neurons by hyperthermia. These studies demonstrated that, while cold challenge enhanced corticotropin-releasing hormone messenger RNA levels in the hypothalamus, hippocampal expression of this neuropeptide was unchanged. Secondly, hyperthermia stimulated expression of hippocampal immediate-early genes, as well as of corticotropin-releasing hormone. Finally, the mechanism of hippocampal corticotropin-releasing hormone induction required neuronal stimulation and was abolished by barbiturate administration. Taken together, these results indicate that neuronal stimulation may regulate hippocampal corticotropin-releasing hormone expression in the immature rat, whereas the peptide's expression in the hypothalamus is influenced by neuroendocrine challenges.


Asunto(s)
Potenciales de Acción/fisiología , Hormona Liberadora de Corticotropina/genética , Hipocampo/crecimiento & desarrollo , Hipotálamo/crecimiento & desarrollo , Neuronas/metabolismo , Estrés Fisiológico/metabolismo , Potenciales de Acción/efectos de los fármacos , Factores de Edad , Animales , Animales Recién Nacidos , Frío/efectos adversos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/metabolismo , Hipertermia Inducida/efectos adversos , Hipotálamo/metabolismo , Masculino , Neuronas/citología , Neuronas/efectos de los fármacos , Pentobarbital/farmacología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/fisiopatología , Transducción de Señal/fisiología , Regulación hacia Arriba/fisiología
6.
Epilepsia ; 40(9): 1190-7, 1999 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10487181

RESUMEN

PURPOSE: The gamma-aminobutyric acid (GABA) degradation blocker gamma-vinyl-GABA (VGB) is used clinically to treat seizures in both adult and immature individuals. The mechanism by which VGB controls developmental seizures is not fully understood. Specifically, whether the anticonvulsant properties of VGB arise only from its elevation of brain GABA levels and the resulting activation of GABA receptors, or also from associated mechanisms, remains unresolved. Corticotropin-releasing hormone (CRH), a neuropeptide present in many brain regions involved in developmental seizures, is a known convulsant in the immature brain and has been implicated in some developmental seizures. In certain brain regions, it has been suggested that CRH synthesis and release may be regulated by GABA. Therefore we tested the hypothesis that VGB decreases CRH gene expression in the immature rat brain, consistent with the notion that VGB may decrease seizures also by reducing the levels of the convulsant molecule, CRH. METHODS: VGB was administered to immature, 9-day-old rats in clinically relevant doses, whereas littermate controls received vehicle. RESULTS: In situ hybridization histochemistry demonstrated a downregulation of CRH mRNA levels in the hypothalamic paraventricular nucleus but not in other limbic regions of VGB-treated pups compared with controls. In addition, VGB-treated pups had increased CRH peptide levels in the anterior hypothalamus, as shown by radioimmunoassay. CONCLUSIONS: These findings are consistent with a reduction of both CRH gene expression and secretion in the hypothalamus, but do not support an indirect anticonvulsant mechanism of VGB via downregulation of CRH levels in limbic structures. However, the data support a region-specific regulation of CRH gene expression by GABA.


Asunto(s)
4-Aminobutirato Transaminasa/antagonistas & inhibidores , Encéfalo/metabolismo , Hormona Liberadora de Corticotropina/biosíntesis , Ácido gamma-Aminobutírico/análogos & derivados , Ácido gamma-Aminobutírico/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/fisiología , Expresión Génica , Hipotálamo/efectos de los fármacos , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Inmunohistoquímica , Hibridación in Situ , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Vigabatrin , Ácido gamma-Aminobutírico/farmacología
7.
Nat Med ; 5(8): 888-94, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10426311

RESUMEN

Febrile (fever-induced) seizures affect 3-5% of infants and young children. Despite the high incidence of febrile seizures, their contribution to the development of epilepsy later in life has remained controversial. Combining a new rat model of complex febrile seizures and patch clamp techniques, we determined that hyperthermia-induced seizures in the immature rat cause a selective presynaptic increase in inhibitory synaptic transmission in the hippocampus that lasts into adulthood. The long-lasting nature of these potent alterations in synaptic communication after febrile seizures does not support the prevalent view of the 'benign' nature of early-life febrile convulsions.


Asunto(s)
Encéfalo/fisiopatología , Sistema Límbico/fisiopatología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Convulsiones Febriles/fisiopatología , Animales , Encéfalo/crecimiento & desarrollo , Técnicas de Cultivo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Inhibidores Enzimáticos/farmacología , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Hipotálamo/fisiología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/fisiología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
8.
Brain Res Dev Brain Res ; 114(2): 265-8, 1999 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-10320766

RESUMEN

Maternal deprivation (MDep) of neonatal rats significantly influences the hypothalamic-pituitary-adrenal (HPA) axis. This study hypothesized that GR-mRNA modulation constituted an early, critical mechanism for the acute effects of MDep on neuroendocrine stress-responses. GR-mRNA hybridization signal in hippocampal CA1, hypothalamic paraventricular nucleus (PVN) and frontal cortex was significantly reduced immediately following 24 h MDep. In amygdala, cingulate cortex, PVN and CA1, apparent gender-dependent MDep effects on GR-mRNA expression were observed, without significant differences in absolute levels. Thus, rapid, region-specific MDep effects on GR-mRNA expression in HPA-regulating areas are shown, consistent with involvement of GR-expression in mechanisms of MDep influence on HPA tone.


Asunto(s)
Envejecimiento/fisiología , Regulación del Desarrollo de la Expresión Génica , Hipotálamo/metabolismo , Sistema Límbico/metabolismo , Privación Materna , ARN Mensajero/genética , Amígdala del Cerebelo/crecimiento & desarrollo , Amígdala del Cerebelo/metabolismo , Animales , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Femenino , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipotálamo/crecimiento & desarrollo , Sistema Límbico/crecimiento & desarrollo , Masculino , Núcleo Hipotalámico Paraventricular/crecimiento & desarrollo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales , Transcripción Genética
9.
J Neuroendocrinol ; 10(9): 663-9, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9744483

RESUMEN

Age-appropriate acute stress, such as cold exposure, provokes the secretion of corticotropin releasing factor (CRF) from the hypothalamus, leading to a robust increase of plasma corticosterone in the immature rat. This activation of the hypothalamic-pituitary-adrenal system is accompanied by a stress-induced increase of steady-state CRF-mRNA expression in the hypothalamic paraventricular nucleus (PVN). In the current study, we analysed changes in CRF-mRNA expression in the PVN and the central nucleus of the amygdala (ACe) in the immature rat in response to a single episode of cold stress and three repeated exposures to this same stressor. CRF-mRNA expression in the PVN increased after a single, but not repeated exposures to cold stress, while repeated acute stress increased the content of the CRF peptide in the anterior hypothalamus. In the ACe, repeated episodes of cold stress resulted in increased expression of CRF-mRNA. These findings indicate a differential regulation of CRF gene expression in the PVN and ACe of the immature rat by single and repeated acute stress.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Hormona Liberadora de Corticotropina/genética , Núcleo Hipotalámico Paraventricular/metabolismo , ARN Mensajero/metabolismo , Estrés Fisiológico/genética , Enfermedad Aguda , Animales , Frío , Hormona Liberadora de Corticotropina/sangre , Hormona Liberadora de Corticotropina/metabolismo , Hipotálamo/metabolismo , Ratas , Recurrencia , Estrés Fisiológico/metabolismo
10.
Brain Res Dev Brain Res ; 107(1): 81-90, 1998 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-9602071

RESUMEN

Corticotropin releasing factor (CRF) activates two known receptor types, CRF1, and CRF2. In the adult rat brain, CRF2 has a distinct distribution pattern, suggesting that it may mediate functions exclusive of CRF1. The goal of this study was to determine the age-dependent distribution of CRF2-messenger RNA (CRF2-mRNA) in the rat brain. Brains from rats sacrificed under stress-free conditions on fetal days (F) 15, 16, 17 and 19, and postnatal days 1, 3, 5, 7, 9, 12, 15, 25, 49, and 90 (adult) were analyzed using semiquantitative in situ hybridization histochemistry. The onset and distribution of CRF2-mRNA in the developing rat brain revealed important differences from the adult expression pattern: earliest expression of CRF2-mRNA was observed in the ventromedial hypothalamus (VMH) on F16. High levels of CRF2-mRNA were present in the fronto-parietal cortex in the fetal and early postnatal brain but not later. Conversely, no CRF2-mRNA was detectable in the ventroposterior (lateral and medial) thalamic nuclei prior to postnatal day 7. Distinct developmental profiles of CRF2-mRNA were also observed in the lateral septum, medial, basal and cortical amygdala nuclei, and in several hippocampal fields. In conclusion, CRF2 is expressed in the hypothalamus on F16, prior to the detection of CRF itself in the paraventricular nucleus. The differential levels and distributions of CRF2-mRNA in hypothalamic and limbic brain regions indicate a precise regulation of this receptor's expression during development, as shown for CRF1. Regulation of the levels of CRF2 may modulate the effects of CRF (and related ligands) on target neurons, consistent with differential maturation of the functions mediated by this receptor.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/metabolismo , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/fisiología , Desarrollo Embrionario y Fetal/fisiología , Histocitoquímica , Hipotálamo/metabolismo , Hibridación in Situ , Sistema Límbico/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/genética , Distribución Tisular
11.
Int J Dev Neurosci ; 9(5): 473-8, 1991.
Artículo en Inglés | MEDLINE | ID: mdl-1685845

RESUMEN

Using in situ hybridization histochemistry, corticotropin-releasing hormone gene expression is first detectable in the parvocellular portion of the rat paraventricular nucleus on the 17th fetal day. The prevalence of messenger RNA for corticotropin releasing hormone decreases perinatally, specifically between the 19th and 21st fetal days. By the 4th postnatal day, CRH gene expression is similar to that of the adult rat. Somatostatin messenger-RNA is detectable on the 14th fetal day in the periventricular nucleus. No perinatal hiatus in somatostatin gene expression is evident.


Asunto(s)
Hormona Liberadora de Corticotropina/genética , Regulación de la Expresión Génica/fisiología , Hipotálamo/metabolismo , Somatostatina/genética , Animales , Hormona Liberadora de Corticotropina/biosíntesis , Diencéfalo/crecimiento & desarrollo , Diencéfalo/metabolismo , Femenino , Feto/fisiología , Hipotálamo/crecimiento & desarrollo , Hibridación de Ácido Nucleico , Núcleo Hipotalámico Paraventricular/crecimiento & desarrollo , Núcleo Hipotalámico Paraventricular/metabolismo , Embarazo , ARN Mensajero/análisis , Ratas , Ratas Endogámicas , Somatostatina/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA