Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 201(11): 5468-5480, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36813937

RESUMEN

Yerba mate (Ilex paraguariensis St. Hill.) has shown a relatively high capacity for micronutrient absorption and could be a candidate for biofortification and combating a lack of micronutrients. To further evaluate the accumulation capacity of Ni and Zn, yerba mate clonal seedlings were grown in containers under five rates of Ni or Zn (0, 0.5, 2, 10, and 40 mg kg-1) with three soils originating from different parent material (basalt, rhyodacite, and sandstone). After 10 months, plants were harvested, divided into component parts (leaves, branches, and roots), and evaluated for 12 elements. The use of Zn and Ni enhanced seedling growth under rhyodacite- and sandstone-derived soils at the first application rate. Application of Zn and Ni resulted in linear increases based on Mehlich I extractions; recovery of Ni was smaller than Zn. Root Ni concentration increased from approximately 20 to 1000 mg kg-1 in rhyodacite-derived soil and from 20 to 400 mg kg-1 in basalt- and sandstone-derived soils; respective increases in leaf tissue were ~ 3 to 15 mg kg-1 and 3 to 10 mg kg-1. For Zn, the maximum obtained values were close to 2000, 1000, and 800 mg kg-1 for roots, leaves, and branches for rhyodacite-derived soils, respectively. Corresponding values for basalt- and sandstone-derived soils were 500, 400, and 300 mg kg-1, respectively. Although yerba mate is not a hyperaccumulator, this species has a relatively high capacity to accumulate Ni and Zn in young tissue with the highest accumulation occurring in roots. Yerba mate showed high potential to be used in biofortification programs for Zn.


Asunto(s)
Ilex paraguariensis , Zinc , Níquel , Suelo , Micronutrientes , Extractos Vegetales
2.
Ecotoxicol Environ Saf ; 190: 110147, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918255

RESUMEN

Selenium (Se) is an essential element for human and animal, although considered beneficial to higher plants. Selenium application at high concentration to plants can cause toxicity decreasing the physiological quality of seeds. This study aimed to characterize the Se toxicity on upland rice yield, seed physiology and the localization of Se in seeds using X-ray fluorescence microanalysis (µ-XRF). In the flowering stage, foliar application of Se (0, 250, 500, 1000, 1500, 2000 g ha-1) as sodium selenate was performed. A decrease in rice yield and an increase in seed Se concentrations were observed from 250 g Se ha-1. The storage proteins in the seeds showed different responses with Se application (decrease in albumin, increase in prolamin and glutelin). There was a reduction in the concentrations of total sugars and sucrose with the application of 250 and 500 g Se ha-1. The highest intensities Kα counts of Se were detected mainly in the endosperm and aleurone/pericarp. µ-XRF revealed the spatial distribution of sulfur, calcium, and potassium in the seed embryos. The seed germination decreased, and the electrical conductivity increased in response to high Se application rates showing clearly an abrupt decrease of physiological quality of rice seeds. This study provides information for a better understanding of the effects of Se toxicity on rice, revealing that in addition to the negative effects on yield, there are changes in the physiological and biochemical quality of seeds.


Asunto(s)
Oryza/fisiología , Selenio/toxicidad , Contaminantes del Suelo/toxicidad , Animales , Endospermo , Glútenes , Humanos , Nutrientes , Oryza/metabolismo , Proteínas de Plantas , Semillas/efectos de los fármacos , Semillas/fisiología , Ácido Selénico/análisis , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA