Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant J ; 96(4): 772-785, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30118566

RESUMEN

O-Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O-acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O-acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock-out mutants of Arabidopsis, tbl10-1 and tbl10-2, were isolated and shown to exhibit reduced levels of wall-bound acetyl esters, equivalent of ~50% of the wild-type level in pectin-enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan-I (RG-I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O-acetylation of RG-I, possibly as an acetyltransferase, and suggest that O-acetylated RG-I plays a role in abiotic stress responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Pectinas/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Botrytis/metabolismo , Glucanos/metabolismo , Mananos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/metabolismo , Polisacáridos/metabolismo , Pseudomonas syringae/metabolismo , Transcriptoma , Xilanos/metabolismo
2.
Plant J ; 84(6): 1137-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26565655

RESUMEN

Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 µm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Fucosa/análogos & derivados , Raíces de Plantas/citología , Arabidopsis/citología , Arabidopsis/genética , Forma de la Célula/efectos de los fármacos , Fucosa/farmacología , Mutación , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
3.
Ann Bot ; 115(1): 55-66, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25434027

RESUMEN

BACKGROUND AND AIMS: In flowering plants, fertilization relies on the delivery of the sperm cells carried by the pollen tube to the ovule. During the tip growth of the pollen tube, proper assembly of the cell wall polymers is required to maintain the mechanical properties of the cell wall. Xyloglucan (XyG) is a cell wall polymer known for maintaining the wall integrity and thus allowing cell expansion. In most angiosperms, the XyG of somatic cells is fucosylated, except in the Asterid clade (including the Solanaceae), where the fucosyl residues are replaced by arabinose, presumably due to an adaptive and/or selective diversification. However, it has been shown recently that XyG of Nicotiana alata pollen tubes is mostly fucosylated. The objective of the present work was to determine whether such structural differences between somatic and gametophytic cells are a common feature of Nicotiana and Solanum (more precisely tomato) genera. METHODS: XyGs of pollen tubes of domesticated (Solanum lycopersicum var. cerasiforme and var. Saint-Pierre) and wild (S. pimpinellifolium and S. peruvianum) tomatoes and tobacco (Nicotiana tabacum) were analysed by immunolabelling, oligosaccharide mass profiling and GC-MS analyses. KEY RESULTS: Pollen tubes from all the species were labelled with the mAb CCRC-M1, a monoclonal antibody that recognizes epitopes associated with fucosylated XyG motifs. Analyses of the cell wall did not highlight major structural differences between previously studied N. alata and N. tabacum XyG. In contrast, XyG of tomato pollen tubes contained fucosylated and arabinosylated motifs. The highest levels of fucosylated XyG were found in pollen tubes from the wild species. CONCLUSIONS: The results clearly indicate that the male gametophyte (pollen tube) and the sporophyte have structurally different XyG. This suggests that fucosylated XyG may have an important role in the tip growth of pollen tubes, and that they must have a specific set of functional XyG fucosyltransferases, which are yet to be characterized.


Asunto(s)
Glucanos/metabolismo , Nicotiana/metabolismo , Solanum lycopersicum/metabolismo , Solanum/metabolismo , Xilanos/metabolismo , Arabinosa/metabolismo , Fucosiltransferasas/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Inmunohistoquímica , Solanum lycopersicum/enzimología , Oligosacáridos/química , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Solanum/enzimología , Nicotiana/enzimología
4.
Rapid Commun Mass Spectrom ; 28(8): 908-16, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24623695

RESUMEN

RATIONALE: The arabinoxylans are one of the main components of plant cell walls and are known to play major roles in plant tissues properties depending in particular on their structural features. It has been recently shown that one of the strategies developed by resurrection plants to overcome dehydration is based on cell wall composition. For this purpose, the structural characterization of arabinoxylans from desiccation-tolerant grass Eragrostis nindensis (E. nindensis) was compared with its close relative, the desiccation-sensitive Eragrostis tef (E. tef) in order to further understand mechansism of desiccation tolerance in resurrection plants. METHODS: Ion mobility spectrometry coupled to mass spectrometry (IM-MS) in combination with the conventional mass spectrometric approaches, including matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)) and gas chromatography/mass spectrometry (GC/MS), were used to characterize arabinoxylan fragments obtained after endo-xylanase digestion of leave extracts from E. nindensis and E. tef. RESULTS: Whole fingerprinting by MALDI-MS analysis showed the presence of various arabinoxylan fragments within leaves of E. nindensis and E. tef. The monosaccharide composition and some linkage information were determined by GC/MS experiments. Information regarding the branching and sequence details was obtained by ESI-MS(n) experiments after sample permethylation. The presence of structural isomeric ions with different collision cross sections was evidenced by IM-MS which could be differentiated using ESI-MS(n). CONCLUSIONS: We have shown that an orthogonal approach, and especially IM-MS associated to ESI-MS(n) (n = 2 to 4) and GC/MS allowed characterization of arabinoxylan fragments of E. nindensis and E. tef and revealed the presence of isomeric structures. The same arabinoxylan structures were identified for both species but in different relative abundance. Moreover, this work illustrated that IM-MS can efficiently separate isomeric structures and advantageously complements the conventional mass spectrometric methodologies used for arabinoxylan structural characterization.


Asunto(s)
Eragrostis/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Xilanos/análisis , Xilanos/química , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/química , Hojas de la Planta/química
5.
Phytochemistry ; 72(1): 59-67, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21051061

RESUMEN

Fruit development is a highly complex process, which involves major changes in plant metabolism leading to cell growth and differentiation. Changes in cell wall composition and structure play a major role in modulating cell growth. We investigated the changes in cell wall composition and the activities of associated enzymes during the dry fruit development of the model plant Arabidopsis thaliana. Silique development is characterized by several specific phases leading to fruit dehiscence and seed dispersal. We showed that early phases of silique growth were characterized by specific changes in non-cellulosic sugar content (rhamnose, arabinose, xylose, galactose and galacturonic acid). Xyloglucan oligosaccharide mass profiling further showed a strong increase in O-acetylated xyloglucans over the course of silique development, which could suggest a decreased capacity of xyloglucans to be associated with each other or to cellulose. The degree of methylesterification, mediated by the activity of pectin methylesterases (PMEs), decreased over the course of silique growth and dehiscence. The major changes in cell wall composition revealed by our analysis suggest that it could be major determinants in modulating cell wall rheology leading to growth or growth arrest.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Pared Celular/química , Glucanos/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Pared Celular/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Glucanos/análisis , Pectinas/análisis , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Xilanos/análisis
6.
Plant Physiol ; 153(4): 1563-76, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20547702

RESUMEN

During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1-->5)-alpha-L-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Pared Celular/química , Tubo Polínico/crecimiento & desarrollo , Microscopía Electrónica , Mucoproteínas/química , Pectinas/química , Proteínas de Plantas/química , Tubo Polínico/ultraestructura , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Plant Physiol ; 140(4): 1406-17, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16500990

RESUMEN

The Arabidopsis (Arabidopsis thaliana) root epidermal bulger1-1 (reb1-1) mutant (allelic to root hair defective1 [rhd1]) is characterized by a reduced root elongation rate and by bulging of trichoblast cells. The REB1/RHD1 gene belongs to a family of UDP-D-Glucose 4-epimerases involved in the synthesis of D-Galactose (Gal). Our previous study showed that certain arabinogalactan protein epitopes were not expressed in bulging trichoblasts of the mutant. In this study, using a combination of microscopical and biochemical methods, we have investigated the occurrence and the structure of three major Gal-containing polysaccharides, namely, xyloglucan (XyG), rhamnogalacturonan (RG)-I, and RG-II in the mutant root cell walls. Our immunocytochemical data show that swollen trichoblasts were not stained with the monoclonal antibody CCRC-M1 specific for alpha-L-Fucp-(1-->2)-beta-D-Galp side chains of XyG, whereas they were stained with anti-XyG antibodies specific for XyG backbone. In addition, analysis of a hemicellulosic fraction from roots demonstrates the presence of two structurally different XyGs in reb1-1. One is structurally similar to wild-type XyG and the other is devoid of fuco-galactosylated side chains and has the characteristic of being insoluble. Similar to anti-XyG antibodies, anti-bupleuran 2IIC, a polyclonal antibody specific for galactosyl epitopes associated with pectins, stained all root epidermal cells of both wild type and reb1-1. Similarly, anti-RG-II antibodies also stained swollen trichoblasts in the mutant. In addition, structural analysis of pectic polymers revealed no change in the galactosylation of RG-I and RG-II isolated from reb1-1 root cells. These findings demonstrate that the reb1-1 mutation affects XyG structure, but not that of pectic polysaccharides, thus lending support to the hypothesis that biosynthesis of Gal as well as galactosylation of complex polysaccharides is regulated at the polymer level.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Pared Celular/metabolismo , Galactosa/metabolismo , Polisacáridos/metabolismo , UDPglucosa 4-Epimerasa/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/fisiología , Glucanos/análisis , Glucanos/metabolismo , Glucanos/ultraestructura , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Pectinas/análisis , Pectinas/metabolismo , Pectinas/ultraestructura , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Polisacáridos/análisis , Polisacáridos/ultraestructura , UDPglucosa 4-Epimerasa/fisiología , Xilanos/análisis , Xilanos/metabolismo , Xilanos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA