Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069347

RESUMEN

Many inherited metabolic disorders (IMDs), including disorders of amino acid, fatty acid, and carbohydrate metabolism, are treated with a dietary reduction or exclusion of certain macronutrients, putting one at risk of a reduced intake of micronutrients. In this review, we aim to provide available evidence on the most common micronutrient deficits related to specific dietary approaches and on the management of their deficiency, in the meanwhile discussing the main critical points of each nutritional supplementation. The emerging concepts are that a great heterogeneity in clinical practice exists, as well as no univocal evidence on the most common micronutrient abnormalities. In phenylketonuria, for example, micronutrients are recommended to be supplemented through protein substitutes; however, not all formulas are equally supplemented and some of them are not added with micronutrients. Data on pyridoxine and riboflavin status in these patients are particularly scarce. In long-chain fatty acid oxidation disorders, no specific recommendations on micronutrient supplementation are available. Regarding carbohydrate metabolism disorders, the difficult-to-ascertain sugar content in supplementation formulas is still a matter of concern. A ketogenic diet may predispose one to both oligoelement deficits and their overload, and therefore deserves specific formulations. In conclusion, our overview points out the lack of unanimous approaches to micronutrient deficiencies, the need for specific formulations for IMDs, and the necessity of high-quality studies, particularly for some under-investigated deficits.


Asunto(s)
Enfermedades Metabólicas , Oligoelementos , Humanos , Dieta , Suplementos Dietéticos , Micronutrientes/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Ácidos Grasos
2.
JIMD Rep ; 63(4): 276-291, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35822092

RESUMEN

In this report, we describe the case of an 11-year-old boy, who came to our attention for myalgia and muscle weakness, associated with inappetence and vomiting. Hypertransaminasemia was also noted, with ultrasound evidence of hepatomegaly. Biochemical investigations revealed acylcarnitine and organic acid profiles resembling those seen in MADD, that is, multiple acyl-CoA dehydrogenase deficiencies (OMIM #231680) a rare inherited disorder of fatty acids, amino acids, and choline metabolism. The patient carried a single pathogenetic variant in the ETFDH gene (c.524G>A, p.Arg175His) and no pathogenetic variant in the riboflavin (Rf) homeostasis related genes (SLC52A1, SLC52A2, SLC52A3, SLC25A32, FLAD1). Instead, compound heterozygosity was found in the ACAD8 gene (c.512C>G, p.Ser171Cys; c.822C>A, p.Asn274Lys), coding for isobutyryl-CoA dehydrogenase (IBD), whose pathogenic variants are associated to IBD deficiency (OMIM #611283), a rare autosomal recessive disorder of valine catabolism. The c.822C>A was never previously described in a patient. Subsequent further analyses of Rf homeostasis showed reduced levels of flavins in plasma and altered FAD-dependent enzymatic activities in erythrocytes, as well as a significant reduction in the level of the plasma membrane Rf transporter 2 in erythrocytes. The observed Rf/flavin scarcity in this patient, possibly associated with a decreased ETF:QO efficiency might be responsible for the observed MADD-like phenotype. The patient's clinical picture improved after supplementation of Rf, l-carnitine, Coenzyme Q10, and also 3OH-butyrate. This report demonstrates that, even in the absence of genetic defects in genes involved in Rf homeostasis, further targeted molecular analysis may reveal secondary and possibly treatable biochemical alterations in this pattern.

3.
IUBMB Life ; 74(7): 672-683, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34558787

RESUMEN

Riboflavin (Rf), or vitamin B2, is the precursor of FMN and FAD, redox cofactors of several dehydrogenases involved in energy metabolism, redox balance and other cell regulatory processes. FAD synthase, coded by FLAD1 gene in humans, is the last enzyme in the pathway converting Rf into FAD. Mutations in FLAD1 gene are responsible for neuromuscular disorders, in some cases treatable with Rf. In order to mimic these disorders, the Caenorhabditis elegans (C. elegans) gene orthologue of FLAD1 (flad-1) was silenced in a model strain hypersensitive to RNA interference in nervous system. Silencing flad-1 resulted in a significant decrease in total flavin content, paralleled by a decrease in the level of the FAD-dependent ETFDH protein and by a secondary transcriptional down-regulation of the Rf transporter 1 (rft-1) possibly responsible for the total flavin content decrease. Conversely an increased ETFDH mRNA content was found. These biochemical changes were accompanied by significant phenotypical changes, including impairments of fertility and locomotion due to altered cholinergic transmission, as indicated by the increased sensitivity to aldicarb. A proposal is made that neuronal acetylcholine production/release is affected by alteration of Rf homeostasis. Rf supplementation restored flavin content, increased rft-1 transcript levels and eliminated locomotion defects. In this aspect, C. elegans could provide a low-cost animal model to elucidate the molecular rationale for Rf therapy in human Rf responsive neuromuscular disorders and to screen other molecules with therapeutic potential.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Nucleotidiltransferasas , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Enfermedades Neuromusculares/genética , Nucleotidiltransferasas/genética , Riboflavina/metabolismo , Vitaminas/metabolismo
4.
Electrophoresis ; 27(5-6): 1182-98, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16470778

RESUMEN

In this case report we studied alterations in mitochondrial proteins in a patient suffering from recurrent profound muscle weakness, associated with ethylmalonic-adipic aciduria, who had benefited from high dose of riboflavin treatment. Morphological and biochemical alterations included muscle lipid accumulation, low muscle carnitine content, reduction in fatty acid beta-oxidation and reduced activity of complexes I and II of the respiratory chain. Riboflavin therapy partially or totally reversed these symptoms and increased the level of muscle flavin adenine dinucleotide, suggesting that aberrant flavin cofactor metabolism accounted for the disease. Proteomic investigation of muscle mitochondria revealed decrease or absence of several flavoenzymes, enzymes related to flavin cofactor-dependent mitochondrial pathways and mitochondrial or mitochondria-associated calcium-binding proteins. All these deficiencies were completely rescued after riboflavin treatment. This study indicates for the first time a profound involvement of riboflavin/flavin cofactors in modulating the level of a number of functionally coordinated polypeptides involved in fatty acyl-CoA and amino acid metabolism, extending the number of enzymatic pathways altered in riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency.


Asunto(s)
Acil-CoA Deshidrogenasas/deficiencia , Músculo Esquelético/enzimología , Riboflavina/uso terapéutico , Aminoácidos/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo II de Transporte de Electrones/deficiencia , Electroforesis en Gel Bidimensional , Ácidos Grasos/metabolismo , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Histocitoquímica , Humanos , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/metabolismo , Modelos Biológicos , Músculo Esquelético/metabolismo , Oxidación-Reducción , Proteómica , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA