Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
NMR Biomed ; 36(2): e4837, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36151589

RESUMEN

Deuterated water (2 H2 O) is a widely used tracer of carbohydrate biosynthesis in both preclinical and clinical settings, but the significant kinetic isotope effects (KIE) of 2 H can distort metabolic information and mediate toxicity. 18 O-water (H2 18 O) has no significant KIE and is incorporated into specific carbohydrate oxygens via well-defined mechanisms, but to date it has not been evaluated in any animal model. Mice were given H2 18 O during overnight feeding and 18 O-enrichments of liver glycogen, triglyceride glycerol (TG), and blood glucose were quantified by 13 C NMR and mass spectrometry (MS). Enrichment of oxygens 5 and 6 relative to body water informed indirect pathway contributions from the Krebs cycle and triose phosphate sources. Compared with mice fed normal chow (NC), mice whose NC was supplemented with a fructose/glucose mix (i.e., a high sugar [HS] diet) had significantly higher indirect pathway contributions from triose phosphate sources, consistent with fructose glycogenesis. Blood glucose and liver TG 18 O-enrichments were quantified by MS. Blood glucose 18 O-enrichment was significantly higher for HS versus NC mice and was consistent with gluconeogenic fructose metabolism. TG 18 O-enrichment was extensive for both NC and HS mice, indicating a high turnover of liver triglyceride, independent of diet. Thus H2 18 O informs hepatic carbohydrate biosynthesis in similar detail to 2 H2 O but without KIE-associated risks.


Asunto(s)
Glucemia , Glucógeno Hepático , Ratones , Animales , Glucemia/metabolismo , Glucógeno Hepático/metabolismo , Glucosa/metabolismo , Gluconeogénesis , Agua/metabolismo , Hígado/metabolismo , Glicerol , Triosas/metabolismo , Fructosa/metabolismo , Fosfatos/metabolismo
2.
J Clin Invest ; 127(2): 695-708, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28112681

RESUMEN

BACKGROUND: Dietary intake of saturated fat is a likely contributor to nonalcoholic fatty liver disease (NAFLD) and insulin resistance, but the mechanisms that initiate these abnormalities in humans remain unclear. We examined the effects of a single oral saturated fat load on insulin sensitivity, hepatic glucose metabolism, and lipid metabolism in humans. Similarly, initiating mechanisms were examined after an equivalent challenge in mice. METHODS: Fourteen lean, healthy individuals randomly received either palm oil (PO) or vehicle (VCL). Hepatic metabolism was analyzed using in vivo 13C/31P/1H and ex vivo 2H magnetic resonance spectroscopy before and during hyperinsulinemic-euglycemic clamps with isotope dilution. Mice underwent identical clamp procedures and hepatic transcriptome analyses. RESULTS: PO administration decreased whole-body, hepatic, and adipose tissue insulin sensitivity by 25%, 15%, and 34%, respectively. Hepatic triglyceride and ATP content rose by 35% and 16%, respectively. Hepatic gluconeogenesis increased by 70%, and net glycogenolysis declined by 20%. Mouse transcriptomics revealed that PO differentially regulates predicted upstream regulators and pathways, including LPS, members of the TLR and PPAR families, NF-κB, and TNF-related weak inducer of apoptosis (TWEAK). CONCLUSION: Saturated fat ingestion rapidly increases hepatic lipid storage, energy metabolism, and insulin resistance. This is accompanied by regulation of hepatic gene expression and signaling that may contribute to development of NAFLD.REGISTRATION. ClinicalTrials.gov NCT01736202. FUNDING: Germany: Ministry of Innovation, Science, and Research North Rhine-Westfalia, German Federal Ministry of Health, Federal Ministry of Education and Research, German Center for Diabetes Research, German Research Foundation, and German Diabetes Association. Portugal: Portuguese Foundation for Science and Technology, FEDER - European Regional Development Fund, Portuguese Foundation for Science and Technology, and Rede Nacional de Ressonância Magnética Nuclear.


Asunto(s)
Tejido Adiposo/metabolismo , Grasas de la Dieta/efectos adversos , Metabolismo Energético/efectos de los fármacos , Resistencia a la Insulina , Hígado/metabolismo , Aceites de Plantas/efectos adversos , Tejido Adiposo/patología , Adulto , Animales , Citocina TWEAK , Grasas de la Dieta/administración & dosificación , Humanos , Hígado/patología , Masculino , Ratones , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Aceite de Palma , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Aceites de Plantas/administración & dosificación , Factores de Necrosis Tumoral/metabolismo
3.
Metabolism ; 61(2): 250-4, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21862086

RESUMEN

During feeding, dietary galactose is a potential source of hepatic glycogen synthesis; but its contribution has not been measured to date. In the presence of deuterated water ((2)H(2)O), uridine diphosphate (UDP)-glucose derived from galactose is not enriched, whereas the remainder derived from glucose-6-phosphate (G6P) is enriched in position 2 to the same level as body water, assuming complete G6P-fructose-6-phosphate (F6P) exchange. Hence, the difference between UDP-glucose position 2 and body water enrichments reflects the contribution of galactose to glycogen synthesis relative to all other sources. In study 1, G6P-F6P exchange in 6 healthy subjects was quantified by supplementing a milk-containing breakfast meal with 10 g of [U-(2)H(7)]glucose and quantifying the depletion of position 2 enrichment in urinary menthol glucuronide. In study 2, another 6 subjects ingested (2)H(2)O and acetaminophen followed by an identical breakfast meal with 10 g of [1-(13)C]glucose to resolve direct/indirect pathways and galactose contributions to glycogen synthesis. Metabolite enrichments were determined by (2)H and (13)C nuclear magnetic resonance. In study 1, G6P-F6P exchange approached completion; therefore, the difference between position 2 and body water enrichments in study 2 (0.20% ± 0.03% vs 0.27% ± 0.03%, P < .005) was attributed to galactose glycogenesis. Dietary galactose contributed 19% ± 3% to glycogen synthesis. Of the remainder, 58% ± 5% was derived from the direct pathway and 22% ± 4% via the indirect pathway. The contribution of galactose to hepatic glycogen synthesis was resolved from that of direct and indirect pathways using a combination of (2)H(2)O and [1-(13)C]glucose tracers.


Asunto(s)
Ingestión de Alimentos/fisiología , Salud , Glucógeno Hepático/biosíntesis , Leche , Adulto , Animales , Isótopos de Carbono/farmacocinética , Óxido de Deuterio/farmacocinética , Femenino , Fructosafosfatos/metabolismo , Glucosa/metabolismo , Glucosa/farmacocinética , Glucosa-6-Fosfato/metabolismo , Glucurónidos/metabolismo , Humanos , Glucógeno Hepático/metabolismo , Masculino , Leche/metabolismo , Leche/fisiología , Distribución Tisular , Adulto Joven
4.
Magn Reson Med ; 54(2): 429-34, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16032678

RESUMEN

The contribution of gluconeogenesis to fasting glucose production was determined by a simple measurement of urinary menthol glucuronide (MG) 2H enrichment from 2H2O. Following ingestion of 2H2O (0.5% body water) during an overnight fast and a pharmacological dose (400 mg) of a commercial peppermint oil preparation the next morning, 364 micromol MG was quantitatively recovered from a 2-h urine collection by ether extraction and a 125 micromol portion was directly analyzed by 2H NMR. The glucuronide 2H-signals were fully resolved and their relative intensities matched those of the monoacetone glucose derivative. The pharmacokinetics and yields of urinary MG after ingestion of 400 mg peppermint oil as either gelatin or enteric-coated capsules 1 h before breakfast were quantified in five healthy subjects. Gelatin capsules yielded 197 +/- 81 micromol of MG from the initial 2-h urine collection while enteric-coated capsules gave 238 +/- 84 micromol MG from the 2- to 4-h urine collection.


Asunto(s)
Gluconeogénesis , Glucuronatos/orina , Espectroscopía de Resonancia Magnética/métodos , Mentol/análogos & derivados , Aceites de Plantas/farmacología , Adulto , Deuterio , Femenino , Humanos , Masculino , Mentha piperita , Mentol/orina , Aceites de Plantas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA