Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427213

RESUMEN

Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.

2.
Nutrients ; 16(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38398892

RESUMEN

Treatment options for sarcopenia are currently limited, and primarily rely on two main therapeutic approaches: resistance-based physical activity and dietary interventions. However, details about specific nutrients in the diet or supplementation are unclear. We aim to investigate the relationship between nutrient intake and lean mass, function, and strength. Data were derived from the Gothenburg H70 birth cohort study in Sweden, including 719,70-year-olds born in 1944 (54.1% females). For independent variables, the diet history method (face-to-face interviews) was used to estimate habitual food intake during the preceding three months. Dependent variables were gait speed (muscle performance), hand grip strength (muscle strength), and the appendicular lean soft tissue index (ALSTI). Linear regression analyses were performed to analyze the relationship between the dependent variables and each of the covariates. Several nutrients were positively associated with ALSTI, such as polyunsaturated fatty acids (DHA, EPA), selenium, zinc, riboflavin, niacin equivalent, vitamin B12, vitamin D, iron, and protein. After correction for multiple comparisons, there were no remaining correlations with handgrip and gait speed. Findings of positive correlations for some nutrients with lean mass suggest a role for these nutrients in maintaining muscle volume. These results can be used to inform clinical trials to expand the preventive strategies and treatment options for individuals at risk of muscle loss and sarcopenia.


Asunto(s)
Sarcopenia , Femenino , Humanos , Anciano de 80 o más Años , Anciano , Masculino , Fuerza de la Mano/fisiología , Estudios de Cohortes , Composición Corporal/fisiología , Fuerza Muscular/fisiología , Ingestión de Alimentos , Músculos
3.
Expert Rev Neurother ; 24(3): 313-324, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379273

RESUMEN

INTRODUCTION: Targeted interventions are needed to delay or prevent the onset of neurodegenerative diseases. Poor dietary habits are associated with cognitive decline, highlighting the benefits of a healthy diet with fish and polyunsaturated fatty acids (PUFAs). Intake of omega-3 PUFAs docosahexaenoic acid (DHA), α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) is linked with healthy aging, cardiovascular benefits, and reduced risk of Alzheimer's disease. Although omega-3 has health benefits, its intake is often inadequate and insufficient in modern diets. Although fish oil supplements offer an alternative source, inconsistent results from clinical trials raise questions about the factors determining their success. AREAS COVERED: In this this review, the authors discuss the aforementioned determining factors and highlight strategies that could enhance the effectiveness of omega-3 PUFAs interventions for dementia and cognitive decline. Moreover, the authors provide suggestions for potential future research. EXPERT OPINION: Factors such as diet, lifestyle, and genetic predisposition can all influence the effectiveness of omega-3 supplementation. When implementing clinical trials, it is crucial to consider these factors and recognize their potential impact on the interpretation of results. It is important to study each variable independently and the interactions between them.


Asunto(s)
Demencia , Ácidos Grasos Omega-3 , Humanos , Ácidos Grasos Omega-3/uso terapéutico , Ácido Eicosapentaenoico/uso terapéutico , Ácidos Docosahexaenoicos/uso terapéutico , Suplementos Dietéticos , Demencia/prevención & control , Demencia/tratamiento farmacológico
5.
Neural Regen Res ; 17(8): 1675-1684, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35017414

RESUMEN

Inflammatory processes and proinflammatory cytokines have a key role in the cellular processes of neurodegenerative diseases and are linked to the pathogenesis of functional and mental health disorders. Tumor necrosis factor alpha has been reported to play a major role in the central nervous system in Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and many other neurodegenerative diseases. Therefore, a potent proinflammatory/proapoptotic tumor necrosis factor alpha could be a strong candidate for targeted therapy. Plant derivatives have now become promising candidates as therapeutic agents because of their antioxidant and chemical characteristics, and anti-inflammatory features. Recently, phytochemicals including flavonoids, terpenoids, alkaloids, and lignans have generated interest as tumor necrosis factor alpha inhibitor candidates for a number of diseases involving inflammation within the nervous system. In this review, we discuss how phytochemicals as tumor necrosis factor alpha inhibitors are a therapeutic strategy targeting neurodegeneration.

6.
Front Pharmacol ; 12: 644103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093183

RESUMEN

In mammals, sexual hormones such as estrogens play an essential role in maintaining brain homeostasis and function. Estrogen deficit in the brain induces many undesirable symptoms such as learning and memory impairment, sleep and mood disorders, hot flushes, and fatigue. These symptoms are frequent in women who reached menopausal age or have had ovariectomy and in men and women subjected to anti-estrogen therapy. Hormone replacement therapy alleviates menopause symptoms; however, it can increase cardiovascular and cancer diseases. In the search for therapeutic alternatives, medicinal plants and specific synthetic and natural molecules with estrogenic effects have attracted widespread attention between the public and the scientific community. Various plants have been used for centuries to alleviate menstrual and menopause symptoms, such as Cranberry, Ginger, Hops, Milk Thistle, Red clover, Salvia officinalis, Soy, Black cohosh, Turnera diffusa, Ushuva, and Vitex. This review aims to highlight current evidence about estrogenic medicinal plants and their pharmacological effects on cognitive deficits induced by estrogen deficiency during menopause and aging.

7.
Biofactors ; 47(4): 570-586, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33893674

RESUMEN

Amyloidosis is a concept that implicates disorders and complications that are due to abnormal protein accumulation in different cells and tissues. Protein aggregation-associated diseases are classified according to the type of aggregates and deposition sites, such as neurodegenerative disorders and type 2 diabetes mellitus. Polyphenolic phytochemicals such as curcumin and its derivatives have anti-amyloid effects both in vitro and in animal models; however, the underlying mechanisms are not understood. In this review, we summarized possible mechanisms by which curcumin could interfere with self-assembly processes and reduce amyloid aggregation in amyloidosis. Furthermore, we discuss clinical trials in which curcumin is used as a therapeutic agent for the treatment of diseases linking to protein aggregates.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Amiloidosis/prevención & control , Síndrome de Creutzfeldt-Jakob/tratamiento farmacológico , Curcumina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Enfermedad de Huntington/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Amiloidosis/genética , Amiloidosis/metabolismo , Amiloidosis/patología , Ensayos Clínicos como Asunto , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Hipoglucemiantes/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Estrés Oxidativo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregado de Proteínas/efectos de los fármacos , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/antagonistas & inhibidores , Proteínas tau/genética , Proteínas tau/metabolismo
8.
Adv Exp Med Biol ; 1308: 283-290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33861451

RESUMEN

Alzheimer's disease (AD) is one of the most important causes of dementia, especially in the elderlies. Due to the failures of recent clinical trials in finding effective medications, it appears the use of complementary therapies such as Traditional Persian Medicine (TPM) and the rich sources of effective herbs as well as their constituents for improving memory function could be beneficial. The aim of this study was to evaluate the recommended natural remedies in the TPM and examine their pharmacological properties. For this purpose, the data were collected by searching the recommended prescriptions of the seminal TPM textbooks. Then, the names of the most freuqently mentioned plants were extracted from the natural remedies and evaluated for their pharmacological properties. The sources included recently published articles cited in the major scientific databases. A total of 262 plants were identified in 96 evaluated prescriptions; 20 plants were identified with the most frequency of report (i.e. more than 10 times). Their neuroprotective effects, antioxidant features, and anti-AD properties were discussed. Based on our results, TPM has introduced many effective treatments for AD. Hence, more clinical studies are warranted to verify their efficacy and safety.


Asunto(s)
Plantas Medicinales , Cognición , Humanos , Medicina Tradicional , Memoria , Fitoterapia
9.
Adv Exp Med Biol ; 1308: 589-599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33861460

RESUMEN

Fatty Acid Binding-Protein 5 (FABP5) is a cytoplasmic protein, which binds long-chain fatty acids and other hydrophobic ligands. This protein is implicated in several physiological processes including mitochondrial ß-oxidation and transport of fatty acids, membrane phospholipid synthesis, lipid metabolism, inflammation and pain. In the present study, we used molecular docking tools to determine the possible interaction of FABP5 with six selected compounds retrieved form Drugbank. Our results showed that FABP5 binding pocket included 31 polar and non-polar amino acids, and these residues may be related to phosphorylation, acetylation, ubiquitylation, and mono-methylation. Docking results showed that the most energetically favorable compounds are NADH (-9.12 kcal/mol), 5'-O-({[(Phosphonatooxy)phosphinato]oxy}phosphinato)adenosine (-8.62 kcal/mol), lutein (-8.25 kcal/mol), (2S)-2-[(4-{[(2-Amino-4-oxo-1,4,5,6,7,8-hexahydro-6-pteridinyl)methyl]amino}benzoyl)amino]pentanedioate (-7.17 kcal/mol), Pteroyl-L-glutamate (-6.86 kcal/mol) and (1S,3R,5E,7Z)-9,10-Secocholesta-5,7,10-triene-1,3,25-triol (-6.79 kcal/mol). Common interacting residues of FABP5 with nutraceuticals included SER16, LYS24, LYS34, LYS40 and LYS17. Further, we used the SwissADME server to determine the physicochemical and pharmacokinetic characteristics and to predict the ADME parameters of the selected nutraceuticals after molecular analysis by docking with the FABP5 protein. Amongst all compounds, pteroyl-L-glutamate is the only one meeting the Lipinski's rule of five criteria, demonstrating its potential pharmacological use. Finally, our results also suggest the importance of FABP5 in mediating the anti-inflammatory activity of the nutraceutical compounds.


Asunto(s)
Antiinflamatorios , Proteínas de Unión a Ácidos Grasos , Suplementos Dietéticos , Proteínas de Unión a Ácidos Grasos/genética , Ligandos , Simulación del Acoplamiento Molecular
10.
J Mol Model ; 27(2): 58, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33517514

RESUMEN

Alzheimer's disease (AD) is a type of brain disorder, wherein a person experiences gradual memory loss, state of confusion, hallucination, agitation, and personality change. AD is marked by the presence of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs) and synaptic losses. Increased cases of AD in recent times created a dire need to discover or identify chemical compounds that can cease the development of AD. This study focuses on finding potential drug molecule(s) active against ß-secretase, also known as ß-site amyloid precursor protein cleaving enzyme 1 (BACE1). Clustering analysis followed by phylogenetic studies on microarray datasets retrieved from GEO browser showed that BACE1 gene has genetic relatedness with the RCAN1 gene. A ligand library comprising 60 natural compounds retrieved from literature and 25 synthetic compounds collected from DrugBank were screened. Further, 350 analogues of potential parent compounds were added to the library for the docking purposes. Molecular docking studies identified 11-oxotigogenin as the best ligand molecule. The compound showed the binding affinity of - 11.1 Kcal/mole and forms three hydrogen bonds with Trp124, Ile174, and Arg176. The protein-ligand complex was subjected to 25 ns molecular dynamics simulation and the potential energy of the complex was found to be - 1.24579e+06 Kcal/mole. In this study, 11-oxotigogenin has shown promising results against BACE1, which is a leading cause of AD, hence warrants for in vitro and in vivo validation of the same. In addition, in silico identification of 11-oxotigogenin as a potential anti-AD compound paves the way for designing of chemical scaffolds to discover more potent BACE1 inhibitors.Graphical abstract.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Análisis por Conglomerados , Bases de Datos Genéticas , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Humanos , Enlace de Hidrógeno , Ligandos , Análisis por Micromatrices , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Filogenia
11.
Eur J Pharmacol ; 895: 173873, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33460611

RESUMEN

Neuronal survival and axonal renewal following central nervous system damage and in neurodegenerative illnesses, such as Alzheimer's disease (AD), can be enhanced by fast clearance of neuronal apoptotic debris, as well as the removal of amyloid beta (Aß) by phagocytic cells through the process of efferocytosis. This process quickly inhibits the release of proinflammatory and antigenic autoimmune constituents, enhancing the formation of a microenvironment vital for neuronal survival and axonal regeneration. Therefore, the detrimental features associated with microglial phagocytosis uncoupling, such as the accumulation of apoptotic cells, inflammation and phagoptosis, could exacerbate the pathology in brain disease. Some mechanisms of efferocytosis could be targeted by several promising agents, such as curcumin, URMC-099 and Y-P30, which have emerged as potential treatments for AD. This review aims to investigate and update the current research regarding the signaling molecules and pathways involved in efferocytosis and how these could be targeted as a potential therapy in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apoptosis , Encéfalo/patología , Microglía/patología , Neuronas/patología , Fagocitosis , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatología , Humanos , Microglía/efectos de los fármacos , Microglía/metabolismo , Terapia Molecular Dirigida , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fagocitosis/efectos de los fármacos
12.
Toxicology ; 440: 152492, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32407874

RESUMEN

Neurotoxicity induced by exposure to heavy metal lead (Pb) is a concern of utmost importance particularly for countries with industrial-based economies. The developing brain is especially sensitive to exposure to even minute quantities of Pb which can alter neurodevelopmental trajectory with irreversible effects on motor, emotive-social and cognitive attributes even into later adulthood. Chemical synapses form the major pathway of inter-neuronal communications and are prime candidates for higher order brain (motor, memory and behavior) functions and determine the resistance/susceptibility for neurological disorders, including neuropsychopathologies. The synaptic pathways and mechanisms underlying Pb-mediated alterations in neuronal signaling and plasticity are not completely understood. Employing a biochemically isolated synaptosomal fraction which is enriched in synaptic terminals and synaptic mitochondria, this study aimed to analyze the alterations in bioenergetic and redox/antioxidant status of cerebellar synapses induced by developmental exposure to Pb (0.2 %). Moreover, we test the efficacy of vitamin C (ascorbate; 500 mg/kg body weight), a neuroprotective and neuromodulatory antioxidant, in mitigation of Pb-induced neuronal deficits. Our results implicate redox and bioenergetic disruptions as an underlying feature of the synaptic dysfunction observed in developmental Pb neurotoxicity, potentially contributing to consequent deficits in motor, behavioral and psychological attributes of the organisms. In addition, we establish ascorbate as a key ingredient for therapeutic approach against Pb induced neurotoxicity, particularly for early-life exposures.


Asunto(s)
Antioxidantes/uso terapéutico , Ácido Ascórbico/uso terapéutico , Cerebelo/metabolismo , Metabolismo Energético/efectos de los fármacos , Intoxicación del Sistema Nervioso por Plomo/patología , Sinapsis/metabolismo , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Cerebelo/efectos de los fármacos , Femenino , Glutatión/metabolismo , Plomo/sangre , Intoxicación del Sistema Nervioso por Plomo/psicología , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo
13.
Pharmacol Rep ; 72(4): 769-782, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32458309

RESUMEN

Astrocytes are the most abundant glial cells in the central nervous system, and are important players in both brain injury and neurodegenerative disease. Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione), the major active component of turmeric, belongs to the curcuminoid family that was originally isolated from the plant Curcuma longa. Several studies suggest that curcumin may have a beneficial impact on the brain pathology and aging. These effects are due to curcumin's antioxidant, free-radical scavenging, and anti-inflammatory activity. In light of this, our current review aims to discuss the role of astrocytes as essential players in neurodegenerative diseases and suggest that curcumin is capable of direct inhibition of astrocyte activity with a particular focus on its effects in Alexander disease, Alzheimer's disease, ischemia stroke, spinal cord injury, Multiple sclerosis, and Parkinson's disease.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Curcumina/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Curcumina/farmacología , Humanos
14.
Pharmacol Res ; 156: 104765, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32217147

RESUMEN

Curcumin (Cur) is an active derivative extracted from turmeric which exerts a wide range of interactions with biomolecules through complex signaling pathways. Cur has been extensively shown to possess potential antitumor properties. In addition, there is growing body of evidence suggesting that Cur may exert potential anti-estrogen and anti-androgen activity. In vitro and in vivo studies suggest that anticancer properties of Cur against tumors affecting the reproductive system in females and males may be underlied by the Cur-mediated inhibition of androgen and estrogen signaling pathways. In this review we examine various studies assessing the crosstalk between Cur and both androgen and estrogen hormonal activity. Also, we discuss the potential chemopreventive and antitumor role of Cur in the most prevalent cancers affecting the reproductive system in females and males.


Asunto(s)
Antagonistas de Andrógenos/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Curcumina/uso terapéutico , Moduladores de los Receptores de Estrógeno/uso terapéutico , Neoplasias de los Genitales Femeninos/tratamiento farmacológico , Neoplasias de los Genitales Masculinos/tratamiento farmacológico , Hormonas Esteroides Gonadales/antagonistas & inhibidores , Antagonistas de Andrógenos/efectos adversos , Animales , Antineoplásicos Fitogénicos/efectos adversos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Curcumina/efectos adversos , Moduladores de los Receptores de Estrógeno/efectos adversos , Femenino , Neoplasias de los Genitales Femeninos/metabolismo , Neoplasias de los Genitales Femeninos/patología , Neoplasias de los Genitales Masculinos/metabolismo , Neoplasias de los Genitales Masculinos/patología , Hormonas Esteroides Gonadales/metabolismo , Humanos , Masculino , Transducción de Señal , Resultado del Tratamiento
15.
Curr Pharm Des ; 25(45): 4747-4754, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31845627

RESUMEN

Free radicals (FR) act on living organisms and present unpaired electrons in the molecular orbitals of oxygen or nitrogen species. They are classified as redox reactions and account for a wide range of processes in biological systems. Genetic and environmental factors may alter the levels of FR in the cell, leading to deleterious consequences such as membrane lipid peroxidation, protein nitration, enzyme, carbohydrate and DNA damage, ultimately resulting in premature aging and a pro-inflammatory microenvironment as observed in Alzheimer's disease (AD) and autism spectrum disorder (ASD). O2 radical ability to act as a Lewis base and to form a complex with metal transition such as iron and copper (Lewis acids) leads to biomolecules oxidation at physiological pH, thus increasing the possibility of injury and oxidative damage in biological tissues. In this review, we discuss the role of metals, like copper, and the amyloid precursor protein (APP) derivative (s-APP-alpha) as an antioxidant and a possible adjuvant in the treatment of some autistic spectrum disorder symptoms (ASD).


Asunto(s)
Precursor de Proteína beta-Amiloide , Trastorno del Espectro Autista , Cobre/toxicidad , Radicales Libres , Antioxidantes , Humanos , Estrés Oxidativo
16.
Biofactors ; 45(6): 867-879, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31424600

RESUMEN

There is a growing awareness in herbal medications as they are usually safe and devoid of significant adverse effects. Auraptene is a natural bioactive monoterpene coumarin ether and is consumed all over the world. There is growing evidence of the therapeutic benefits of auraptene. Auraptene, also known as auraptene and 7-geranyloxycoumarin, is a bioactive monoterpene coumarin from Rutaceae family, which is isolated from Citrus aurantium (Seville orange) and Aegle marmelos (bael fruit). Auraptene is a highly pleiotropic molecule, which can modulate intracellular signaling pathways that control inflammation, cell growth, and apoptosis. It has a potential therapeutic role in the prevention and treatment of various diseases due to its anti-inflammatory and antioxidant activities as well as its excellent safety profile. In the present article, various pharmacological and therapeutic effects of auraptene were reviewed. Different online databases using keywords such as auraptene, therapeutic effects and pharmacological effects were searched until the end of September 2018, for this purpose. Auraptene has been suggested to be effective in the treatment of a broad range of disorders including inflammatory disorders, dysentery, wounds, scars, keloids, and pain. In addition, different studies have demonstrated that auraptene possesses numerous pharmacological properties including anti-inflammatory, anti-oxidative, anti-diabetic, anti-hypertensive and anti-cancer as well as neuroprotective effects. The present review provides a detailed survey of scientific researches regarding pharmacological properties and therapeutic effects of auraptene.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cumarinas/uso terapéutico , Inflamación/tratamiento farmacológico , Aegle/química , Antiinflamatorios/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citrus/química , Cumarinas/química , Humanos , Transducción de Señal/efectos de los fármacos
17.
Biofactors ; 45(4): 517-535, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31206893

RESUMEN

Traumatic brain injury (TBI) is the most prevalent health problem affecting all age groups, and leads to many secondary problems in other organs especially kidneys, gastrointestinal tract, and heart function. In this review, the search terms were TBI, fluid percussion injury, cold injury, weight drop impact acceleration injury, lateral fluid percussion, cortical impact injury, and blast injury. Studies with Actaea racemosa, Artemisia annua, Aframomum melegueta, Carthamus tinctorius, Cinnamomum zeylanicum, Crocus sativus, Cnidium monnieri, Curcuma longa, Gastrodia elata, Malva sylvestris, Da Chuanxiong Formula, Erigeron breviscapus, Panax ginseng, Salvia tomentosa, Satureja khuzistanica, Nigella sativa, Drynaria fortune, Dracaena cochinchinensis, Polygonum cuspidatum, Rosmarinus officinalis, Rheum tanguticum, Centella asiatica, and Curcuma zedoaria show a significant decrease in neuronal injury by different mechanisms such as increasing superoxide dismutase and catalase activities, suppressing nuclear factor kappa B (NF-κB), interleukin 1 (IL-1), glial fibrillary acidic protein, and IL-6 expression. The aim of this study was to evaluate the neuroprotective effects of medicinal plants in central nervous system pathologies by reviewing the available literature.


Asunto(s)
Traumatismos por Explosión/prevención & control , Lesiones Traumáticas del Encéfalo/prevención & control , Lesión por Frío/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Plantas Medicinales/química , Animales , Traumatismos por Explosión/genética , Traumatismos por Explosión/metabolismo , Traumatismos por Explosión/patología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Catalasa/genética , Catalasa/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/lesiones , Corteza Cerebral/metabolismo , Lesión por Frío/genética , Lesión por Frío/metabolismo , Lesión por Frío/patología , Modelos Animales de Enfermedad , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Fármacos Neuroprotectores/aislamiento & purificación , Ratas , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
18.
J Cell Physiol ; 234(8): 12404-12414, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30609023

RESUMEN

Leukemia comprises a group of hematological malignancies responsible for 8% of all cancers and is the most common cancer in children. Despite significant improvements in leukemia treatment, the efficacy of conventional chemotherapeutic agents is low and the disease carries a poor prognosis with frequent relapses and high mortality. Curcumin is a yellow polyphenol compound with diverse pharmacological actions including anticancer, antioxidant, antidiabetic, anti-inflammatory, immunomodulatory, hepatoprotective, lipid-regulating, antidepressant, and antiarthritic. Many cellular and experimental studies have reported the benefits of curcumin in treating leukemia. Curcumin's anticancer effects are exerted via various mechanisms. Here, we review the effects of curcumin on various types of leukemia whilst considering its mechanisms of action.


Asunto(s)
Antineoplásicos/uso terapéutico , Curcumina/uso terapéutico , Leucemia/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Niño , Humanos , Resultado del Tratamiento
19.
J Cell Physiol ; 234(6): 8610-8617, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30515777

RESUMEN

The prevalence of diabetes mellitus is growing rapidly worldwide. This metabolic disorder affects many physiological pathways and is a key underlying cause of a multitude of debilitating complications. There is, therefore, a critical need for effective diabetes management. Although many synthetic therapeutic glucose-lowering agents have been developed to control glucose homeostasis, they may have unfavorable side effects or limited efficacy. Herbal-based hypoglycemic agents present an adjunct treatment option to mitigate insulin resistance, improve glycemic control and reduce the required dose of standard antidiabetic medications. Saffron (Crocus sativus L.), whilst widely used as a food additive, is a natural product with insulin-sensitizing and hypoglycemic effects. Saffron contains several bioactive ß carotenes, which exert their pharmacological effects in various tissues without any obvious side effects. In this study, we discuss how saffron and its major components exert their hypoglycemic effects by induction of insulin sensitivity, improving insulin signaling and preventing ß-cell failure, all mechanisms combining to achieve better glycemic control.


Asunto(s)
Glucemia/efectos de los fármacos , Crocus , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Insulina/sangre , Extractos Vegetales/uso terapéutico , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Crocus/química , Diabetes Mellitus/sangre , Diabetes Mellitus/fisiopatología , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/aislamiento & purificación , Células Secretoras de Insulina/metabolismo , Extractos Vegetales/efectos adversos , Extractos Vegetales/aislamiento & purificación
20.
Mol Neurobiol ; 56(7): 4925-4944, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30414087

RESUMEN

Medicinal plants are the backbone of modern medicine. In recent times, there is a great urge to discover nootropic medicinal plants to reverse cognitive dysfunction owing to their less adverse effects. Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the inevitable loss of cognitive function, memory and language impairment, and behavioral disturbances, which turn into gradually more severe. Alzheimer's has no current cure, but symptomatic treatments are available and research continues. The number of patients suffering from AD continues to rise and today, there is a worldwide effort under study to find better ways to alleviate Alzheimer's pathogenesis. In this review, the nootropic and anti-Alzheimer's potentials of 6 medicinal plants (i.e., Centella asiatica, Clitoria ternatea, Crocus sativus, Terminalia chebula, Withania somnifera, and Asparagus racemosus) were explored through literature review. This appraisal focused on available information about neuroprotective and anti-Alzheimer's use of these plants and their respective bioactive compounds/metabolites and associated effects in animal models and consequences of its use in human as well as proposed molecular mechanisms. This review progresses our existing knowledge to reveal the promising linkage of traditional medicine to halt AD pathogenesis. This analysis also avowed a new insight to search the promising anti-Alzheimer's drugs.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Nootrópicos/uso terapéutico , Extractos Vegetales/uso terapéutico , Plantas Medicinales , Animales , Humanos , Nootrópicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA