Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1105872, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284503

RESUMEN

Tuberculosis (TB) caused by the complex Mycobacterium tuberculosis (Mtb) is the main cause of death by a single bacterial agent. Last year, TB was the second leading infectious killer after SARS-CoV-2. Nevertheless, many biological and immunological aspects of TB are not completely elucidated, such as the complex process of immunoregulation mediated by regulatory T cells (Treg cells) and the enzymes indoleamine 2,3-dioxygenase (IDO) and heme oxygenase 1 (HO-1). In this study, the contribution of these immunoregulatory factors was compared in mice infected with Mtb strains with different levels of virulence. First Balb/c mice were infected by intratracheal route, with a high dose of mild virulence reference strain H37Rv or with a highly virulent clinical isolate (strain 5186). In the lungs of infected mice, the kinetics of Treg cells during the infection were determined by cytofluorometry and the expression of IDO and HO-1 by RT-PCR and immunohistochemistry. Then, the contribution of immune-regulation mediated by Treg cells, IDO and HO-1, was evaluated by treating infected animals with specific cytotoxic monoclonal antibodies for Treg cells depletion anti-CD25 (PC61 clone) or by blocking IDO and HO-1 activity using specific inhibitors (1-methyl-D,L-tryptophan or zinc protoporphyrin-IX, respectively). Mice infected with the mild virulent strain showed a progressive increment of Treg cells, showing this highest number at the beginning of the late phase of the infection (28 days), the same trend was observed in the expression of both enzymes being macrophages the cells that showed the highest immunostaining. Animals infected with the highly virulent strain showed lower survival (34 days) and higher amounts of Treg cells, as well as higher expression of IDO and HO-1 one week before. In comparison with non-treated animals, mice infected with strain H37Rv with depletion of Treg cells or treated with the enzymes blockers during late infection showed a significant decrease of bacilli loads, higher expression of IFN-g and lower IL-4 but with a similar extension of inflammatory lung consolidation determined by automated morphometry. In contrast, the depletion of Treg cells in infected mice with the highly virulent strain 5186 produced diffuse alveolar damage that was similar to severe acute viral pneumonia, lesser survival and increase of bacillary loads, while blocking of both IDO and HO-1 produced high bacillary loads and extensive pneumonia with necrosis. Thus, it seems that Treg cells, IDO and HO-1 activities are detrimental during late pulmonary TB induced by mild virulence Mtb, probably because these factors decrease immune protection mediated by the Th1 response. In contrast, Treg cells, IDO and HO-1 are beneficial when the infection is produced by a highly virulent strain, by regulation of excessive inflammation that produced alveolar damage, pulmonary necrosis, acute respiratory insufficiency, and rapid death.


Asunto(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Ratones , Animales , Hemo-Oxigenasa 1 , Mycobacterium tuberculosis/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Linfocitos T Reguladores , Virulencia , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Pulmón/microbiología , Necrosis/metabolismo
2.
Int J Mol Sci ; 23(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35682696

RESUMEN

Identification of alternative attenuation targets of Mycobacterium tuberculosis (Mtb) is pivotal for designing new candidates for live attenuated anti-tuberculosis (TB) vaccines. In this context, the CtpF P-type ATPase of Mtb is an interesting target; specifically, this plasma membrane enzyme is involved in calcium transporting and response to oxidative stress. We found that a mutant of MtbH37Rv lacking ctpF expression (MtbΔctpF) displayed impaired proliferation in mouse alveolar macrophages (MH-S) during in vitro infection. Further, the levels of tumor necrosis factor and interferon-gamma in MH-S cells infected with MtbΔctpF were similar to those of cells infected with the parental strain, suggesting preservation of the immunogenic capacity. In addition, BALB/c mice infected with Mtb∆ctpF showed median survival times of 84 days, while mice infected with MtbH37Rv survived 59 days, suggesting reduced virulence of the mutant strain. Interestingly, the expression levels of ctpF in a mouse model of latent TB were significantly higher than in a mouse model of progressive TB, indicating that ctpF is involved in Mtb persistence in the dormancy state. Finally, the possibility of complementary mechanisms that counteract deficiencies in Ca2+ transport mediated by P-type ATPases is suggested. Altogether, our results demonstrate that CtpF could be a potential target for Mtb attenuation.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Calcio , ATPasas Transportadoras de Calcio , Membrana Celular/patología , Ratones , Tuberculosis/microbiología , Virulencia/genética
3.
Front Endocrinol (Lausanne) ; 13: 1055430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699022

RESUMEN

Metabolic syndrome is considered the precursor of type 2 diabetes mellitus. Tuberculosis is a leading infection that constitutes a global threat remaining a major cause of morbi-mortality in developing countries. People with type 2 diabetes mellitus are more likely to suffer from infection with Mycobacterium tuberculosis. For both type 2 diabetes mellitus and tuberculosis, there is pulmonary production of anti-inflammatory glucocorticoids mediated by the enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1). The adrenal hormone dehydroepiandrosterone (DHEA) counteracts the glucocorticoid effects of cytokine production due to the inhibition of 11ß-HSD1. Late advanced tuberculosis has been associated with the suppression of the Th1 response, evidenced by a high ratio of cortisol/DHEA. In a murine model of metabolic syndrome, we determined whether DHEA treatment modifies the pro-inflammatory cytokines due to the inhibition of the 11ß-HSD1 expression. Since macrophages express 11ß-HSD1, our second goal was incubating them with DHEA and Mycobacterium tuberculosis to show that the microbicide effect was increased by DHEA. Enoyl-acyl carrier protein reductase (InhA) is an essential enzyme of Mycobacterium tuberculosis involved in the mycolic acid synthesis. Because 11ß-HSD1 and InhA are members of a short-chain dehydrogenase/reductase family of enzymes, we hypothesize that DHEA could be an antagonist of InhA. Our results demonstrate that DHEA has a direct microbicide effect against Mycobacterium tuberculosis; this effect was supported by in silico docking analysis and the molecular dynamic simulation studies between DHEA and InhA. Thus, DHEA increases the production of pro-inflammatory cytokines in the lung, inactivates GC by 11ß-HSD1, and inhibits mycobacterial InhA. The multiple functions of DHEA suggest that this hormone or its synthetic analogs could be an efficient co-adjuvant for tuberculosis treatment.


Asunto(s)
Antiinfecciosos , Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Mycobacterium tuberculosis , Tuberculosis , Humanos , Ratones , Animales , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Deshidroepiandrosterona/uso terapéutico , Glucocorticoides/metabolismo , Comorbilidad , Tuberculosis/tratamiento farmacológico , Citocinas
4.
Clin Exp Immunol ; 205(2): 232-245, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33866550

RESUMEN

Tuberculosis (TB) is the leading cause of death from a single bacterial infectious agent and is one of the most relevant issues of public health. Another pandemic disease is type II diabetes mellitus (T2D) that is estimated to affect half a billion people in the world. T2D is directly associated with obesity and a sedentary lifestyle and is frequently associated with immunosuppression. Immune dysfunction induced by hyperglycemia increases infection frequency and severity. Thus, in developing countries the T2D/TB co-morbidity is frequent and represents one of the most significant challenges for the health-care systems. Several immunoendocrine abnormalities are occurring during the chronic phase of both diseases, such as high extra-adrenal production of active glucocorticoids (GCs) by the activity of 11-ß-hydroxysteroid dehydrogenase type 1 (11-ßHSD1). 11-ßHSD1 catalyzes the conversion of inactive cortisone to active cortisol or corticosterone in lungs and liver, while 11-ß-hydroxysteroid dehydrogenase type 2 (11-ßHSD2) has the opposite effect. Active GCs have been related to insulin resistance and suppression of Th1 responses, which are deleterious factors in both T2D and TB. The anabolic adrenal hormone dehydroepiandrosterone (DHEA) exerts antagonistic effects on GC signaling in immune cells and metabolic tissues; however, its anabolic effects prohibit its use to treat immunoendocrine diseases. 16α-bromoepiandrosterone (BEA) is a water miscible synthetic sterol related to DHEA that lacks an anabolic effect while amplifying the immune and metabolic properties with important potential therapeutic uses. In this work, we compared the expression of 11-ßHSD1 and the therapeutic efficacy of BEA in diabetic mice infected with tuberculosis (TB) (T2D/TB) with respect to non-diabetic TB-infected mice (TB). T2D was induced by feeding mice with a high-fat diet and administering a single low-dose of streptozotocin. After 4 weeks of T2D establishment, mice were infected intratracheally with a high-dose of Mycobacterium tuberculosis strain H37Rv. Then, mice were treated with BEA three times a week by subcutaneous and intratracheal routes. Infection with TB increased the expression of 11-ßHSD1 and corticosterone in the lungs and liver of both T2D/TB and TB mice; however, T2D/TB mice developed a more severe lung disease than TB mice. In comparison with untreated animals, BEA decreased GC and 11-ßHSD1 expression while increasing 11-ßHSD2 expression. These molecular effects of BEA were associated with a reduction in hyperglycemia and liver steatosis, lower lung bacillary loads and pneumonia. These results uphold BEA as a promising effective therapy for the T2D/TB co-morbidity.


Asunto(s)
Androsterona/farmacología , Antituberculosos/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Tuberculosis/tratamiento farmacológico , 11-beta-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Comorbilidad , Corticosterona/farmacología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Hidrocortisona/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/metabolismo
5.
PLoS One ; 14(5): e0217457, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31145751

RESUMEN

For many years, tuberculosis (TB) has been a major public health problem worldwide. Advances for treatment and eradication have been very limited. Silymarin (Sm) is a natural product with antioxidant and hepatoprotective activities that has been proposed as a complementary medicine to reduce the liver injury produced by the conventional anti-TB chemotherapy. Sm also has immunoregulatory and microbicide properties. In this study, we determined the effect of Sm on the growth control of mycobacteria. In vitro studies showed that Sm and Silibinin (the principal active compound of Sm) have microbicidal activity against drug-sensitive and multidrug-resistant (MDR) mycobacteria, induce the production of protective cytokines from infected macrophages, and improve the growth control of mycobacteria (p ≤ 0.0001). Studies in vivo using a model of progressive pulmonary TB in BALB/c mice infected with drug-sensitive or MDR mycobacteria have shown that Sm induces significant expression of Th-1 cytokines such as IFN-γ and IL-12 as well as TNFα, which produce significant therapeutic activity when administered alone and apparently have a synergistic effect with chemotherapy. These results suggest that Sm has a bactericidal effect and can contribute to the control and establishment of a TH1 protective immune response against mycobacterial infection. Thus, it seems that this flavonoid has a promising potential as adjuvant therapy in the treatment of TB.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Silimarina/farmacología , Tuberculosis Pulmonar/tratamiento farmacológico , Animales , Antibacterianos/farmacología , Antituberculosos/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Tuberculosis Extensivamente Resistente a Drogas/patología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/patogenicidad , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/patología
6.
Helicobacter ; 11(2): 123-30, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16579842

RESUMEN

BACKGROUND: Gender differences have been shown regarding the changes in the inflammatory response, gastrin secretion, and gastric acidity during Helicobacter pylori infection. AIM: To investigate the role of estradiol and progesterone in the changes of the gastric mucosa induced by H. pylori during the early stage of infection in female gerbils. MATERIALS AND METHODS: Thirty-three adult ovariectomized female gerbils were infected with H. pylori (SS1); 7 days after infection they were treated with low and high doses of estradiol (50 and 250 microg/60 days pellet), progesterone (15 and 50 mg/60 days pellet) and vehicle. Non-ovariectomized infected gerbils were used as control. Gerbils were euthanized after 6 weeks of infection. Histologic evaluation, immunohistochemical detection of proliferation cell nuclear antigen (PCNA), gastrin, and apoptosis by terminal deoxynucleotide nick end labeling (TUNEL) assay were performed. Positive cells for PCNA, TUNEL, and gastrin were counted in 10 oriented glands per animal. Two-sided p = .05 was considered significant. RESULTS: Estradiol-treated groups showed more intense and extended acute and follicular gastritis compared to the vehicle group, whereas progesterone-treated groups presented less gastritis than the other groups. Proliferation and apoptosis indexes were significantly lower in the vehicle group when compared with those of the control; both indexes were increased in the high-dose estradiol and progesterone groups as compared with those of the vehicle. Grade I nonmetaplastic atrophy was observed in the vehicle and progesterone groups. The high-dose progesterone group showed a significant reduction in the number of gastrin cells. CONCLUSIONS: Estradiol and progesterone participate in the gastric mucosal response to early H. pylori infection in gerbils.


Asunto(s)
Estradiol/farmacología , Mucosa Gástrica/patología , Gastritis/patología , Infecciones por Helicobacter/patología , Helicobacter pylori , Progesterona/farmacología , Animales , Apoptosis , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Gastrinas/análisis , Gerbillinae , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Antígeno Nuclear de Célula en Proliferación/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA