Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627598

RESUMEN

The brain's sensitivity to oxidative stress and neuronal cell death requires effective pharmacotherapy approaches. Current pharmacological therapies are frequently ineffective and display negative side effects. Bioactive chemicals found in plants may provide a potential alternative due to their antioxidant and neuroprotective properties and can be used in therapy and the management of a variety of neuropsychiatric, neurodevelopmental, and neurodegenerative illnesses. Several natural products, including vitamin C, Cammelia sinensis polyphenols, Hypericum perforatum, and Crocus sativus have shown promise in lowering oxidative stress and treating symptoms of major depressive disorder (MDD). Similarly, bioactive compounds such as curcumin, luteolin, resveratrol, quercetin, and plants like Acorus gramineus, Rhodiola rosea, and Ginkgo biloba are associated with neuroprotective effects and symptom improvement in neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). Furthermore, in neurodegenerative diseases, natural compounds from Rhodiola rosea, Morinda lucida, and Glutinous rehmannia provide neurological improvement. Further study in clinical samples is required to thoroughly investigate the therapeutic advantages of these bioactive substances for persons suffering from these illnesses.

2.
Talanta ; 264: 124692, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37276677

RESUMEN

Cardiovascular diseases are among the major causes of mortality and morbidity. Warfarin is often prescribed for these disorders, an anticoagulant with inter and intra-dosage variability dose required to achieve the target international normalized ratio. Warfarin presents a narrow therapeutic index, and due to its variability, it can often be associated with the risk of hemorrhage, or in other patients, thromboembolism. Single-nucleotide polymorphisms are included in the causes that contribute to this variability. The Cytochrome P450 (CYP) 2C9*3 genetic polymorphism modifies its enzymatic activity, and hence warfarin's plasmatic concentration. Thus, the need for a selective, rapid, low-cost, and real-time detection device is crucial before prescribing warfarin. In this work, a disposable electrochemical DNA-based biosensor capable of detecting CYP2C9*3 polymorphism was developed. By analyzing genomic databases, two specific 78 base pairs DNA probes; one with the wild-type adenine (Target-A) and another with the cytosine (Target-C) single-nucleotide genetic variation were designed. The biosensor implied the immobilization on screen-printed gold electrodes of a self-assembled monolayer composed by mercaptohexanol and a linear CYP2C9*3 DNA-capture probe. To improve the selectivity and avoid secondary structures a sandwich format of the CYP2C9*3 allele was designed using complementary fluorescein isothiocyanate-labeled signaling DNA probe and enzymatic amplification of the electrochemical signal. Chronoamperometric measurements were performed at a range of 0.015-1.00 nM for both DNA targets achieving limit of detection of 42 p.m. The developed DNA-based biosensor was able to discriminate between the two synthetic target DNA targets, as well as the targeted denatured genomic DNA, extracted from volunteers genotyped as non-variant homozygous (A/A) and heterozygous (A/C) of the CYP2C9*3 polymorphism.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Técnicas Biosensibles , Humanos , Warfarina , Polimorfismo de Nucleótido Simple , Farmacogenética , Citocromo P-450 CYP2C9/genética , Hidrocarburo de Aril Hidroxilasas/genética , Vitamina K Epóxido Reductasas/genética , Anticoagulantes , ADN/genética , Genotipo , Sondas de ADN/genética
3.
J Ethnopharmacol ; 290: 115107, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35176467

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease is the most common form of dementia, but its treatment options remain few and ineffective. To find new therapeutic strategies, natural products have gained interest due to their neuroprotective potential, being able to target different pathological hallmarks associated with this disorder. Several plant species are traditionally used due to their empirical neuroprotective effects and it is worth to explore their mechanism of action. AIM OF THE STUDY: This study intended to explore the neuroprotective potential of seven traditional medicinal plants, namely Scutellaria baicalensis, Ginkgo biloba, Hypericum perforatum, Curcuma longa, Lavandula angustifolia, Trigonella foenum-graecum and Rosmarinus officinalis. The safety assessment with reference to pesticides residues was also aimed. MATERIALS AND METHODS: Decoctions prepared from these species were chemically characterized by HPLC-DAD and screened for their ability to scavenge four different free radicals (DPPH•, ABTS•+, O2•‒ and •NO) and to inhibit enzymes related to neurodegeneration (cholinesterases and glycogen synthase kinase-3ß). Cell viability through MTT assay was also evaluated in two different brain cell lines, namely non-tumorigenic D3 human brain endothelial cells (hCMEC/D3) and NSC-34 motor neurons. Furthermore, and using GC, 21 pesticides residues were screened. RESULTS: Regarding chemical composition, chromatographic analysis revealed the presence of several flavonoids, phenolic acids, curcuminoids, phenolic diterpenoids, one alkaloid and one naphthodianthrone in the seven decoctions. All extracts were able to scavenge free radicals and were moderate glycogen synthase kinase-3ß inhibitors; however, they displayed weak to moderate acetylcholinesterase and butyrylcholinesterase inhibition. G. biloba and L. angustifolia decoctions were the less cytotoxic to hCMEC/D3 and NSC-34 cell lines. No pesticides residues were detected. CONCLUSIONS: The results extend the knowledge on the potential use of plant extracts to combat multifactorial disorders, giving new insights into therapeutic avenues for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/patología , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colinesterasas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/metabolismo , Glucógeno Sintasa/efectos de los fármacos , Humanos , Medicina Tradicional China/métodos , Fármacos Neuroprotectores/efectos adversos , Residuos de Plaguicidas/análisis , Extractos Vegetales/efectos adversos
4.
Sci Total Environ ; 634: 831-842, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29653427

RESUMEN

Since annually a high amount of wastes is produced in vine pruning, the aim of this study was to evaluate the potential of vine shoots from two Portuguese grape varieties (Touriga Nacional - TN and Tinta Roriz - TR) to be used as a natural source of phenolic compounds. To reach this goal, three techniques were explored, namely microwave-assisted extraction (MAE), subcritical water extraction (SWE) and conventional extraction (CE). The phenolic composition of the extracts, antioxidant and biological activities were evaluated by spectrophotometry and chromatography. MAE and SWE produced the highest concentrated extracts. TR vine shoot variety had the highest antioxidant activity and total phenolic (32.1±0.9mggallicacidequivalents/g dry sample), as well as flavonoid content (18.7±1.2mgepicatechinequivalents/g dry sample). For the first time, the biological activity of the vine shoot extracts was tested. Results demonstrated that all of them had antimicrobial potential against different bacteria and yeasts, and the ability of inhibiting α-amylase and acetylcholinesterase enzymes, with MAE TR extracts being the most efficient. HPLC analysis enabled the identification of different phenolic compounds, with gallic acid, catechin, myricetin and kaempferol-3-O-rutinoside being the main contributors to the phenolic composition. Portuguese vine shoot wastes could serve as easily accessible source of natural antioxidants for the food or pharmaceutical industries.


Asunto(s)
Extractos Vegetales/análisis , Residuos/análisis , Antibacterianos/análisis , Antiinfecciosos/análisis , Flavonoides , Ácido Gálico , Recursos Naturales , Fenoles/análisis , Portugal , Vitis , Vino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA