Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080274

RESUMEN

Lycium barbarum L., used in Chinese traditional medicine for centuries, has gained popularity in Europe in the last decade because of its health-promoting properties assigned to phenolic compounds and antioxidant activity. Goji fruits and extracts are often used as ingredients in popular homemade milk cocktails. Within this study, the microbiological stability of the milkshake, with the addition of berries from NingXia Province and their extract, was evaluated using the ComBase® prognostic model. The extraction of dry berries in water at 70 °C for 72 h produced an extract showing radical inhibition of 64.9% and a total phenol content of 63.6 mg g-1. The phenolic compounds with the highest concentrations were in turn: 3-hydroxybenzoic acid, gallic acid, procyanidin B2, and catechin. The milkshake inoculated with the reference B. subtilis was a model for the study of its microbiological stability. Using ComBase®, a microbiological response to the delayed cooling of goji berry extract and the milkshake with the addition of goji berries was predicted and the model's accuracy assessed. The best-performing models were constructed for extract (Bias factor Bf 1.33, Accuracy factor Af 3.43) and milkshake (Bf 1.29, Af 1.65) in a profile simulating delayed refrigeration (22.5 °C-9 °C-23 °C). Despite discrepancies between predicted and observed bacterial growth due to the antimicrobial effect of the derivatives of goji berries, the models were validated as "overpredict", i.e., "fail safe", and may be used to prognose the stability of these products in the given temperature profile.


Asunto(s)
Lycium , Antioxidantes/farmacología , Bebidas Gaseosas , Frutas , Fenoles , Extractos Vegetales/farmacología , Temperatura
2.
Molecules ; 27(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014358

RESUMEN

Although sugar beets are primarily treated as a source of sucrose, due to their rich chemical composition, they can also be a source of other carbohydrates, e.g., mono- and oligosaccharides. The study focused on both fresh beet roots and those stored in mounds. Our studies have shown that, in addition to sucrose, sugar beet tissue also comprises other carbohydrates: kestose (3.39%) and galactose (0.65%) and, in smaller amounts, glucose, trehalose and raffinose. The acidic hydrolysis of the watery carbohydrates extracts resulted in obtaining significant amounts of glucose (8.37%) and arabinose (3.11%) as well as xylose and galactose and, in smaller amounts, mannose. An HPSEC liquid chromatography study of the molecular mass profile of the carbohydrate compounds present in the beet roots showed alongside the highest percentage (96.53-97.43%) of sucrose (0.34 kDa) the presence of pectin compounds from the araban group and arabinoxylooligosaccharides (5-9 kDa) with a percentage share of 0.61 to 1.87%. On the basis of our research, beet roots can be considered a potential source of carbohydrates, such as kestose, which is classified as fructooligosaccharide (FOS). The results of this study may be helpful in evaluating sugar beets as a direct source of various carbohydrates, or as a raw material for the biosynthesis of fructooligosaccharides (FOS) or galactooligosaccharides (GOS).


Asunto(s)
Beta vulgaris , Beta vulgaris/química , Carbohidratos/química , Galactosa , Glucosa , Hexosas , Oligosacáridos , Sacarosa , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA