Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 15(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36615754

RESUMEN

Interactions between mitochondria and the endoplasmic reticulum, known as MAMs, are altered in the liver in obesity, which contributes to disruption of the insulin signaling pathway. In addition, the plasma level of glycine is decreased in obesity, and the decrease is strongly correlated with the severity of insulin resistance. Certain nutrients have been shown to regulate MAMs; therefore, we tested whether glycine supplementation could reduce insulin resistance in the liver by promoting MAM integrity. Glycine (5 mM) supported MAM integrity and insulin response in primary rat hepatocytes cultured under control and lipotoxic (palmitate 500 µM) conditions for 18 h. In contrast, in C57 BL/6 JOlaHsd mice (male, 6 weeks old) fed a high-fat, high-sucrose diet (HFHS) for 16 weeks, glycine supplementation (300 mg/kg) in drinking water during the last 6 weeks (HFHS-Gly) did not reverse the deleterious impact of HFHS-feeding on liver MAM integrity. In addition, glycine supplementation worsened fasting glycemia and glycemic response to intraperitoneal pyruvate injection compared to HFHS. The adverse impact of glycine supplementation on hepatic gluconeogenesis was further supported by the higher oxaloacetate/acetyl-CoA ratio in the liver in HFHS-Gly compared to HFHS. Although glycine improves MAM integrity and insulin signaling in the hepatocyte in vitro, no beneficial effect was found on the overall metabolic profile of HFHS-Gly-fed mice.


Asunto(s)
Intolerancia a la Glucosa , Resistencia a la Insulina , Masculino , Ratas , Ratones , Animales , Intolerancia a la Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Gluconeogénesis , Glicina/farmacología , Hígado/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Insulina , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Ratones Endogámicos C57BL
2.
Nutrients ; 11(6)2019 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-31208147

RESUMEN

Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Glicina/farmacocinética , Enfermedades Metabólicas/sangre , Enfermedad del Hígado Graso no Alcohólico/sangre , Obesidad/sangre , Disponibilidad Biológica , Diabetes Mellitus Tipo 2/etiología , Dieta/efectos adversos , Microbioma Gastrointestinal , Humanos , Hígado/metabolismo , Enfermedades Metabólicas/etiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA