Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ISME J ; 17(12): 2221-2231, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37833524

RESUMEN

Hemipterans are known as hosts to bacterial or fungal symbionts that supplement their unbalanced diet with essential nutrients. Among them, scale insects (Coccomorpha) are characterized by a particularly large diversity of symbiotic systems. Here, using microscopic and genomic approaches, we functionally characterized the symbionts of two scale insects belonging to the Eriococcidae family, Acanthococcus aceris and Gossyparia spuria. These species host Burkholderia bacteria that are localized in the cytoplasm of the fat body cells. Metagenome sequencing revealed very similar and highly reduced genomes (<900KBp) with a low GC content (~38%), making them the smallest and most AT-biased Burkholderia genomes yet sequenced. In their eroded genomes, both symbionts retain biosynthetic pathways for the essential amino acids leucine, isoleucine, valine, threonine, lysine, arginine, histidine, phenylalanine, and precursors for the semi-essential amino acid tyrosine, as well as the cobalamin-dependent methionine synthase MetH. A tryptophan biosynthesis pathway is conserved in the symbiont of G. spuria, but appeared pseudogenized in A. aceris, suggesting differential availability of tryptophan in the two host species' diets. In addition to the pathways for essential amino acid biosynthesis, both symbionts maintain biosynthetic pathways for multiple cofactors, including riboflavin, cobalamin, thiamine, and folate. The localization of Burkholderia symbionts and their genome traits indicate that the symbiosis between Burkholderia and eriococcids is younger than other hemipteran symbioses, but is functionally convergent. Our results add to the emerging picture of dynamic symbiont replacements in sap-sucking Hemiptera and highlight Burkholderia as widespread and versatile intra- and extracellular symbionts of animals, plants, and fungi.


Asunto(s)
Burkholderia , Hemípteros , Animales , Hemípteros/microbiología , Triptófano/genética , Burkholderia/genética , Filogenia , Suplementos Dietéticos , Vitamina B 12 , Nutrientes , Simbiosis/genética , Genoma Bacteriano
2.
ISME J ; 17(7): 1029-1039, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37085551

RESUMEN

Many insects engage in stable nutritional symbioses with bacteria that supplement limiting essential nutrients to their host. While several plant sap-feeding Hemipteran lineages are known to be simultaneously associated with two or more endosymbionts with complementary biosynthetic pathways to synthesize amino acids or vitamins, such co-obligate symbioses have not been functionally characterized in other insect orders. Here, we report on the characterization of a dual co-obligate, bacteriome-localized symbiosis in a family of xylophagous beetles using comparative genomics, fluorescence microscopy, and phylogenetic analyses. Across the beetle family Bostrichidae, most investigated species harbored the Bacteroidota symbiont Shikimatogenerans bostrichidophilus that encodes the shikimate pathway to produce tyrosine precursors in its severely reduced genome, likely supplementing the beetles' cuticle biosynthesis, sclerotisation, and melanisation. One clade of Bostrichid beetles additionally housed the co-obligate symbiont Bostrichicola ureolyticus that is inferred to complement the function of Shikimatogenerans by recycling urea and provisioning the essential amino acid lysine, thereby providing additional benefits on nitrogen-poor diets. Both symbionts represent ancient associations within the Bostrichidae that have subsequently experienced genome erosion and co-speciation with their hosts. While Bostrichicola was repeatedly lost, Shikimatogenerans has been retained throughout the family and exhibits a perfect pattern of co-speciation. Our results reveal that co-obligate symbioses with complementary metabolic capabilities occur beyond the well-known sap-feeding Hemiptera and highlight the importance of symbiont-mediated cuticle supplementation and nitrogen recycling for herbivorous beetles.


Asunto(s)
Escarabajos , Animales , Escarabajos/microbiología , Filogenia , Simbiosis/genética , Bacterias/genética , Insectos/microbiología , Suplementos Dietéticos , Genoma Bacteriano
3.
Commun Biol ; 4(1): 554, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976379

RESUMEN

Glyphosate is widely used as a herbicide, but recent studies begin to reveal its detrimental side effects on animals by targeting the shikimate pathway of associated gut microorganisms. However, its impact on nutritional endosymbionts in insects remains poorly understood. Here, we sequenced the tiny, shikimate pathway encoding symbiont genome of the sawtoothed grain beetle Oryzaephilus surinamensis. Decreased titers of the aromatic amino acid tyrosine in symbiont-depleted beetles underscore the symbionts' ability to synthesize prephenate as the precursor for host tyrosine synthesis and its importance for cuticle sclerotization and melanization. Glyphosate exposure inhibited symbiont establishment during host development and abolished the mutualistic benefit on cuticle synthesis in adults, which could be partially rescued by dietary tyrosine supplementation. Furthermore, phylogenetic analyses indicate that the shikimate pathways of many nutritional endosymbionts likewise contain a glyphosate sensitive 5-enolpyruvylshikimate-3-phosphate synthase. These findings highlight the importance of symbiont-mediated tyrosine supplementation for cuticle biosynthesis in insects, but also paint an alarming scenario regarding the use of glyphosate in light of recent declines in insect populations.


Asunto(s)
Escarabajos/metabolismo , Glicina/análogos & derivados , Simbiosis/fisiología , Escamas de Animales/metabolismo , Animales , Escarabajos/fisiología , Glicina/metabolismo , Glicina/farmacología , Herbicidas , Filogenia , Ácido Shikímico/metabolismo , Simbiosis/efectos de los fármacos , Glifosato
4.
Cell ; 171(7): 1520-1531.e13, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29153832

RESUMEN

Pectin, an integral component of the plant cell wall, is a recalcitrant substrate against enzymatic challenges by most animals. In characterizing the source of a leaf beetle's (Cassida rubiginosa) pectin-degrading phenotype, we demonstrate its dependency on an extracellular bacterium housed in specialized organs connected to the foregut. Despite possessing the smallest genome (0.27 Mb) of any organism not subsisting within a host cell, the symbiont nonetheless retained a functional pectinolytic metabolism targeting the polysaccharide's two most abundant classes: homogalacturonan and rhamnogalacturonan I. Comparative transcriptomics revealed pectinase expression to be enriched in the symbiotic organs, consistent with enzymatic buildup in these structures following immunostaining with pectinase-targeting antibodies. Symbiont elimination results in a drastically reduced host survivorship and a diminished capacity to degrade pectin. Collectively, our findings highlight symbiosis as a strategy for an herbivore to metabolize one of nature's most complex polysaccharides and a universal component of plant tissues.


Asunto(s)
Escarabajos/microbiología , Enterobacteriaceae/genética , Genoma Bacteriano , Animales , Escarabajos/fisiología , Enterobacteriaceae/clasificación , Enterobacteriaceae/enzimología , Enterobacteriaceae/fisiología , Tamaño del Genoma , Pectinas/metabolismo , Simbiosis
5.
PLoS One ; 9(12): e114865, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25490201

RESUMEN

The acquisition and vertical transmission of bacterial symbionts plays an important role in insect evolution and ecology. However, the molecular mechanisms underlying the stable maintenance and control of mutualistic bacteria remain poorly understood. The cotton stainer Dysdercus fasciatus harbours the actinobacterial symbionts Coriobacterium glomerans and Gordonibacter sp. in its midgut. The symbionts supplement limiting B vitamins and thereby significantly contribute to the host's fitness. In this study, we experimentally disrupted the symbionts' vertical transmission route and performed comparative transcriptomic analyses of genes expressed in the gut of aposymbiotic (symbiont-free) and control individuals to study the host immune response in presence and absence of the mutualists. Annotation of assembled cDNA reads identified a considerable number of genes involved in the innate immune system, including different protein isoforms of several immune effector proteins (specifically i-type lysozyme, defensin, hemiptericin, and pyrrhocoricin), suggesting the possibility for a highly differentiated response towards the complex resident microbial community. Gene expression analyses revealed a constitutive expression of transcripts involved in signal transduction of the main insect immune pathways, but differential expression of certain antimicrobial peptide genes. Specifically, qPCRs confirmed the significant down-regulation of c-type lysozyme and up-regulation of hemiptericin in aposymbiotic individuals. The high expression of c-type lysozyme in symbiont-containing bugs may serve to lyse symbiont cells and thereby harvest B-vitamins that are necessary for subsistence on the deficient diet of Malvales seeds. Our findings suggest a sophisticated host response to perturbation of the symbiotic gut microbiota, indicating that the innate immune system not only plays an important role in combating pathogens, but also serves as a communication interface between host and symbionts.


Asunto(s)
Actinobacteria/fisiología , Tracto Gastrointestinal/inmunología , Perfilación de la Expresión Génica , Insectos/genética , Insectos/inmunología , Intestinos/inmunología , Simbiosis/fisiología , Complejo Vitamínico B , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Biomarcadores/metabolismo , Suplementos Dietéticos , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Insectos/microbiología , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Filogenia , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Proc Biol Sci ; 281(1796): 20141838, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25339726

RESUMEN

Despite the demonstrated functional importance of gut microbes, our understanding of how animals regulate their metabolism in response to nutritionally beneficial symbionts remains limited. Here, we elucidate the functional importance of the African cotton stainer's (Dysdercus fasciatus) association with two actinobacterial gut symbionts and subsequently examine the insect's transcriptional response following symbiont elimination. In line with bioassays demonstrating the symbionts' contribution towards host fitness through the supplementation of B vitamins, comparative transcriptomic analyses of genes involved in import and processing of B vitamins revealed an upregulation of gene expression in aposymbiotic (symbiont-free) compared with symbiotic individuals; an expression pattern that is indicative of B vitamin deficiency in animals. Normal expression levels of these genes, however, can be restored by either artificial supplementation of B vitamins into the insect's diet or reinfection with the actinobacterial symbionts. Furthermore, the functional characterization of the differentially expressed thiamine transporter 2 through heterologous expression in Xenopus laevis oocytes confirms its role in cellular uptake of vitamin B1. These findings demonstrate that despite an extracellular localization, beneficial gut microbes can be integral to the host's metabolic homeostasis, reminiscent of bacteriome-localized intracellular mutualists.


Asunto(s)
Actinobacteria/fisiología , Heterópteros/microbiología , Simbiosis , Vitaminas/metabolismo , Actinobacteria/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Transporte Biológico , Heterópteros/genética , Heterópteros/metabolismo , Homeostasis , Redes y Vías Metabólicas , Transcriptoma , Complejo Vitamínico B/biosíntesis , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA