Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lasers Med Sci ; 39(1): 86, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438583

RESUMEN

In this preclinical investigation, we examined the effects of combining preconditioned diabetic adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation (PBM) on a model of infected ischemic delayed healing wound (injury), (IIDHWM) in rats with type I diabetes (TIDM). During the stages of wound healing, we examined multiple elements such as stereology, macrophage polarization, and the mRNA expression levels of stromal cell-derived factor (SDF)-1α, vascular endothelial growth factor (VEGF), hypoxia-induced factor 1α (HIF-1α), and basic fibroblast growth factor (bFGF) to evaluate proliferation and inflammation. The rats were grouped into: (1) control group; (2) diabetic-stem cells were transversed into the injury site; (3) diabetic-stem cells were transversed into the injury site then the injury site exposed to PBM; (4) diabetic stem cells were preconditioned with PBM and implanted into the wound; (5) diabetic stem cells were preconditioned with PBM and transferred into the injury site, then the injury site exposed additional PBM. While on both days 4, and 8, there were advanced histological consequences in groups 2-5 than in group 1, we found better results in groups 3-5 than in group 2 (p < 0.05). M1 macrophages in groups 2-5 were lower than in group 1, while groups 3-5 were reduced than in group 2 (p < 0.01). M2 macrophages in groups 2-5 were greater than in group 1, and groups 3-5 were greater than in group 2. (p ≤ 0.001). Groups 2-5 revealed greater expression levels of bFGF, VEGF, SDF- 1α, and HIF- 1α genes than in group 1 (p < 0.001). Overall group 5 had the best results for histology (p < 0.05), and macrophage polarization (p < 0.001). AD-MSC, PBM, and AD-MSC + PBM treatments all enhanced the proliferative stage of injury repairing in the IIDHWM in TIDM rats. While AD-MSC + PBM was well than the single use of AD-MSC or PBM, the best results were achieved with PBM preconditioned AD-MSC, plus additional PBM of the injury.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Animales , Ratas , Factor A de Crecimiento Endotelial Vascular/genética , Diabetes Mellitus Experimental/genética , Cicatrización de Heridas/genética , Quimiocina CXCL12/genética , Factor 2 de Crecimiento de Fibroblastos , Células Madre
2.
Lasers Med Sci ; 39(1): 46, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270723

RESUMEN

This investigation tried to evaluate the combined and solo effects of photobiomodulation (PBM) and conditioned medium derived from human adipose tissue-derived stem cells (h-ASC-CM) on the inflammatory and proliferative phases of an ischemic infected delayed healing wound model (IIDHWM) in rats with type I diabetes mellitus (TIDM). The present investigation consisted of four groups: group 1 served as the control, group 2 treated with h-ASC-CM, group 3 underwent PBM treatment, and group 4 received a combination of h-ASC-CM and PBM. Clinical and laboratory assessments were conducted on days 4 and 8. All treatment groups exhibited significantly higher wound strength than the group 1 (p = 0.000). Groups 4 and 3 demonstrated significantly greater wound strength than group 2 (p = 0.000). Additionally, all therapeutic groups showed reduced methicillin -resistant Staphylococcus aureus (MRSA) in comparison with group 1 (p = 0.000). While inflammatory reactions, including neutrophil and macrophage counts, were significantly lower in all therapeutic groups rather than group 1 on days 4 and 8 (p < 0.01), groups 4 and 3 exhibited superior results compared to group 2 (p < 0.01). Furthermore, proliferative activities, including fibroblast and new vessel counts, as well as the measurement of new epidermal and dermal layers, were significantly increased in all treatment groups on 4 and 8 days after the surgery (p < 0.001). At the same times, groups 4 and 3 displayed significantly higher proliferative activities compared to group 2 (p < 0.001). The treatment groups exhibited significantly higher mast cell counts and degranulation phenotypes in comparison with the group 1 on day 4 (p < 0.05). The treatment groups showed significantly lower mast cell counts and degranulation phenotypes than group 1 on day 8 (p < 0.05).The combined and individual application of h-ASC-CM and PBM remarkably could accelerate the proliferation phase of wound healing in the IIDHWM for TIDM in rats, as indicated by improved MRSA control, wound strength, and stereological evaluation. Furthermore, the combination of h-ASC-CM and PBM demonstrated better outcomes compared to the individual application of either h-ASC-CM or PBM alone.


Asunto(s)
Diabetes Mellitus , Terapia por Luz de Baja Intensidad , Staphylococcus aureus Resistente a Meticilina , Humanos , Animales , Ratas , Medios de Cultivo Condicionados/farmacología , Recuento de Leucocitos , Células Madre , Cicatrización de Heridas , Proliferación Celular
3.
J Tradit Complement Med ; 14(1): 1-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223808

RESUMEN

Background: Osteoporosis is a chronic and systemic skeletal disease that is defined by low bone mineral density (BMD) along with an increase in bone fragility and susceptibility to fracture. This study aimed to overview clinical evidence on the use of herbal medicine for management of osteoporosis. Methods: Electronic databases including Pubmed, Medline, Cochrane library, and Scopus were searched until November 2022 for any clinical studies on the efficacy and/or safety of plant-derived medicines in the management of osteoporosis. Results: The search yielded 57 results: 19 on single herbs, 16 on multi-component herbal preparations, and 22 on plant-derived secondary metabolites. Risk of fracture, bone alkaline phosphatase, BMD, and specific bone biomarkers are investigated outcomes in these studies. Medicinal plants including Acanthopanax senticosus, Actaea racemosa, Allium cepa, Asparagus racemosus, Camellia sinensis, Cissus quadrangularis, Cornus mas, Nigella sativa, Olea europaea, Opuntia ficus-indica, Pinus pinaster, Trifolium pretense and phytochemicals including isoflavones, ginsenoside, Epimedium prenyl flavonoids, tocotrienols are among plant-derived medicines clinically investigated on osteoporosis. It seems that multi-component herbal preparations were more effective than single-component ones; because of the synergistic effects of their constituents. The investigated herbal medicines demonstrated their promising results in osteoporosis via targeting different pathways in bone metabolism, including balancing osteoblasts and osteoclasts, anti-inflammatory, immunomodulatory, antioxidant, and estrogen-like functions. Conclusion: It seems that plant-derived medicines have beneficial effects on bone and may manage osteoporosis by affecting different targets and pathways involved in osteoporosis; However, Future studies are needed to confirm the effectiveness and safety of these preparations.

4.
Photobiomodul Photomed Laser Surg ; 41(10): 539-548, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37788453

RESUMEN

Objective: In this study, we aimed to explore the role of MicroRNA-26 in photobiomodulation (PBM)- and adipose-derived stem cell (ADS)-based healing of critical-sized foot fractures in a rat model. Background: PBM and ADS treatments are relatively invasive methods for treating bone defects. Specific and oriented cellular and molecular functions can be induced by applying an appropriate type of PBM and ADS treatment. Methods: A critical size foot defect (CSFD) is induced in femoral bones of 24 rats. Then, a human demineralized bone matrix scaffold (hDBMS) was engrafted into all CSFDs. The rats were randomly allocated into four groups (n = 6): (1) control (hDBMS); (2) hDBMS+human ADSs (hADSs), hADSs engrafted into CSFDs; (3) hDBMS+PBM, CSFD exposed to PBM (810 nm wavelength, 1.2 J/cm2 energy density); and (4) hDBMS+(hADSs+PBM), hADSs implanted into the CSFD and then exposed to PBM. At 42 days after CSFD induction, the rats were killed, and the left CSFD was removed for mechanical compression tests and the right CSFD was removed for molecular and histological studies. Results: The results indicate that miRNA-26a, BMP, SMAD, RUNX, and OSTREX had higher expression in the treated groups than in the control group. Further, the biomechanical and histological properties of CSFDs in treated groups were improved compared with the control group. Correlation tests revealed a positive relationship between microRNA and improved biomechanical and cellular parameters of CSFDs in the rat model. Conclusions: We concluded that the MicroRNA-26 signaling pathway probably plays a significant role in the hADS-, PBM-, and hADS+PBM-based healing of CSFDs in rats. Clinical Trial Registration number: IR.SBMU.MSP.REC.1398.980.


Asunto(s)
Terapia por Luz de Baja Intensidad , MicroARNs , Animales , Ratas , Terapia por Luz de Baja Intensidad/métodos , MicroARNs/genética , Células Madre , Cicatrización de Heridas
5.
J Lasers Med Sci ; 14: e18, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583498

RESUMEN

Introduction: Here, we assess the therapeutic effects of photobiomodulation (PBM) and curcumin (CUR)-loaded superparamagnetic iron oxide nanoparticles (SPIONs), alone or together, on the maturation step of a type 1 diabetes (DM1) rat wound model. Methods: Full-thickness wounds were inflicted in 36 rats with diabetes mellitus (DM) induced by the administration of streptozotocin (STZ). The rats were randomly allocated to four groups. Group one was untreated (control); group two received CUR; group 3 received PBM (890 nm, 80 Hz, 0.2 J/cm2); group 4 received a combination of PBM plus CUR. On days 0, 4, 7, and 15, we measured microbial flora, wound closure fraction, tensile strength, and stereological analysis. Results: All treatment groups showed a substantial escalation in the wound closure rate, a substantial reduction in the count of methicillin-resistant Staphylococcus aureus (MRSA), a substantial improvement in wound strength, a substantially improvement in stereological parameters compared to the control group, however, the PBM+CUR group was superior to the other treatment groups (all, P≤0.05). Conclusion: All treatment groups showed significantly improved wound healing in the DM1 rat model. However, the PBM+CUR group was superior to the other treatment groups and the control group in terms of wound strength and stereological parameters.

6.
Lasers Med Sci ; 38(1): 129, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243832

RESUMEN

Diabetic wounds are categorized by chronic inflammation, leading to the development of diabetic foot ulcers, which cause amputation and death. Herewith, we examined the effect of photobiomodulation (PBM) plus allogeneic diabetic adipose tissue-derived stem cells (ad-ADS) on stereological parameters and expression levels of interleukin (IL)-1ß and microRNA (miRNA)-146a in the inflammatory (day 4) and proliferation (day 8) stages of wound healing in an ischemic infected (with 2×107 colony-forming units of methicillin-resistant Staphylococcus aureus) delayed healing wound model (IIDHWM) in type I diabetic (TIDM) rats. There were five groups of rats: group 1 control (C); group 2 (CELL) in which rat wounds received 1×106 ad-ADS; group 3 (CL) in which rat wounds received the ad-ADS and were subsequently exposed to PBM(890 nm, 80 Hz, 3.5 J/cm2, in vivo); group 4 (CP) in which the ad-ADS preconditioned by the PBM(630 nm + 810 nm, 0.05 W, 1.2 J/cm2, 3 times) were implanted into rat wounds; group 5 (CLP) in which the PBM preconditioned ad-ADS were implanted into rat wounds, which were then exposed to PBM. On both days, significantly better histological results were seen in all experimental groups except control. Significantly better histological results were observed in the ad-ADS plus PBM treatment correlated to the ad-ADS alone group (p<0.05). Overall, PBM preconditioned ad-ADS followed by PBM of the wound showed the most significant improvement in histological measures correlated to the other experimental groups (p<0.05). On days 4 and 8, IL-1 ß levels of all experimental groups were lower than the control group; however, on day 8, only the CLP group was different (p<0.01). On day 4, miR-146a expression levels were substantially greater in the CLP and CELL groups correlated to the other groups, on day 8 miR-146a in all treatment groups was upper than C (p<0.01). ad-ADS plus PBM, ad-ADS, and PBM all improved the inflammatory phase of wound healing in an IIDHWM in TIDM1 rats by reducing inflammatory cells (neutrophils, macrophages) and IL-1ß, and increasing miRNA-146a. The ad-ADS+PBM combination was better than either ad-ADS or PBM alone, because of the higher proliferative and anti-inflammatory effects of the PBM+ad-ADS regimen.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Staphylococcus aureus Resistente a Meticilina , MicroARNs , Ratas , Animales , Diabetes Mellitus Experimental/patología , Ratas Wistar , Cicatrización de Heridas , Células Madre/patología , Inflamación/radioterapia , Terapia por Luz de Baja Intensidad/métodos , MicroARNs/genética
7.
Photochem Photobiol Sci ; 22(8): 1791-1807, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37039961

RESUMEN

Herein, we attempted to evaluate the therapeutic potential of photobiomodulation (PBM) and curcumin-loaded iron nanoparticles (CUR), alone and in combination, on wound closure rate (WCR), microbial flora by measuring colony-forming units (CFUs), the stereological and biomechanical properties of repairing wounds in the maturation stage of the wound healing course in an ischemic infected delayed healing wound model (IIDHWM) of type I diabetic (TIDM) rats. There were four groups: group 1 was the control, group 2 received CUR, rats in group 3 were exposed to PBM (80 Hz, 890 nm, and 0.2 J/cm2), and rats in group 4 received both PBM and CUR (PBM + CUR). We found CFU was decreased in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Groups 2, 3, and 4 showed a considerable escalation in WCR compared to group 1 (p = 0.000 for all). In terms of wound strength parameters, substantial increases in bending stiffness and high-stress load were observed in groups 2, 3, and 4 compared to group 1 (p = 0.000 for all). Stereological examinations revealed decreases in neutrophil and macrophage counts and increases in fibroblast counts in groups 2, 3, and 4compared  to group 1 (p = 0.000 for all). Blood vessel counts were more dominant in the PBM and PBM + CUR groups over group 1 (p = 0.000 for all). CFU and wound strength as well as macrophage, neutrophil, and fibroblast counts were found to be improved in the PBM + CUR and PBM groups compared to the CUR group (ranging from p = 0.000 to p < 0.05). Better results were achieved in the PBM + CUR  treatment  over the PBM therapy. We determined therapy with PBM + CUR, PBM alone, and CUR alone substantially accelerated diabetic wound healing in an IIDHWM of TIDM rats compared to control  group. Concomitantly, the PBM + CUR and PBM groups attained significantly enhanced results for WCR, stereological parameters, and wound strength than the CUR group, with the PBM + CUR results being superior to those of the PBM group.


Asunto(s)
Curcumina , Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Ratas , Animales , Cicatrización de Heridas , Ratas Wistar , Curcumina/farmacología , Nanopartículas Magnéticas de Óxido de Hierro
8.
Arch Dermatol Res ; 315(6): 1717-1734, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36808225

RESUMEN

We investigated the impacts of photobiomodulation (PBM) and human allogeneic adipose-derived stem cells (ha-ADS) together and or alone applications on the stereological parameters, immunohistochemical characterizing of M1 and M2 macrophages, and mRNA levels of hypoxia-inducible factor (HIF-1α), basic fibroblast growth factor (bFGF), vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) on inflammation (day 4) and proliferation phases (day 8) of repairing tissues in an infected delayed healing and ischemic wound model (IDHIWM) in type 1 diabetic (DM1) rats. DM1 was created in 48 rats and an IDHIWM was made in all of them, and they were distributed into 4 groups. Group1 = control rats with no treatment. Group2 = rats received (10 × 100000 ha-ADS). Group3 = rats exposed to PBM (890 nm, 80 Hz, 3.46 J/cm2). Group4 = rats received both PBM and ha-ADS. On day 8, there were significantly higher neutrophils in the control group than in other groups (p < 0.01). There were substantially higher macrophages in the PBM + ha-ADS group than in other groups on days 4 and 8 (p < 0.001). Granulation tissue volume, on both days 4 and 8, was meaningfully greater in all treatment groups than in the control group (all, p = 0.000). Results of M1 and M2 macrophage counts of repairing tissue in the entire treatment groups were considered preferable to those in the control group (p < 0.05). Regarding stereological and macrophage phenotyping, the results of the PBM + ha-ADS group were better than the ha-ADS and PBM groups. Results of the tested gene expression of repairing tissue on inflammation and proliferation steps in PBM and PBM + ha-ADS groups were meaningfully better than the control and ha-ADS groups (p < 0.05). We showed that PBM, ha-ADS, and PBM plus ha-ADS, hastened the proliferation step of healing in an IDHIWM in rats with DM1 by regulation of the inflammatory reaction, macrophage phenotyping, and augmented granulation tissue formation. In addition PBM and PBM plus ha-ADS protocols hastened and increased mRNA levels of HIF-1α, bFGF, SDF-1α, and VEGF-A. Totally, in terms of stereological and immuno-histological tests, and also gene expression HIF-1α and VEGF-A, the results of PBM + ha-ADS were superior (additive) to PBM, and ha-ADS alone treatments.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Ratas , Humanos , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Diabetes Mellitus Experimental/metabolismo , Quimiocina CXCL12 , Expresión Génica , Inflamación , Células Madre/metabolismo
9.
Lasers Med Sci ; 37(9): 3601-3611, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36053389

RESUMEN

This experimental study examined the effects of curcumin-loaded iron oxide nanoparticles (CUR), photobiomodulation (PBM), and CUR + PBM treatments on mast cells (MC)s numbers and degranulation, inflammatory cells (macrophages, neutrophils), and wound strength in the last step of the diabetic wound repair process (maturation phase) in a rat model of type one diabetes mellitus (T1DM). T1DM was induced in 24 rats, and 1 month later, an excisional wound was created on each rat's back skin. The rats were then distributed into four groups: (1) untreated diabetic control group (UDCG); (2) rats treated with CUR (CUR); (3) rats exposed to PBM (890 nm, 80 Hz, 0.2 J/cm2) (PBM); (4) rats treated with CUR plus PBM (CUR + PBM). Fifteen days after surgery, skin tissue samples were taken for biomechanical and stereological evaluations. The biomechanical factor of maximum force was observed to be considerably improved in the CUR + PBM (p = 0.000), PBM (p = 0.014), and CUR (p = 0.003) groups compared to the UDCG. CUR + PBM, PBM, and CUR groups had significantly decreased total numbers of MC compared with the UDCG (all, p = 0.001). The results were significantly better in the CUR + PBM (p = 0.000) and PBM (p = 0.003) groups than in the CUR group. Inflammatory cell counts were significantly lower in the CUR + PBM, PBM, and CUR groups than in the UDCG (all, p = 0.0001). In all evaluating methods, the usage of CUR + PBM produced better results than the use of CUR or PBM alone (almost all tests, p = 0.0001). CUR + PBM, PBM, and CUR significantly improved the repair of diabetic skin wounds in type 1 DM rats through significant decreases of MC number, degranulation, and inflammatory cells as well as a noteworthy improvement in wound strength. The impact of CUR + PBM was superior to that of either PBM or CUR alone. It is suggested that CUR + PBM could be used as a MC stabilizer for the effective treatment of some related human diseases.


Asunto(s)
Curcumina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Terapia por Luz de Baja Intensidad , Ratas , Humanos , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Cicatrización de Heridas , Ratas Wistar , Nanopartículas Magnéticas de Óxido de Hierro
10.
Lasers Med Sci ; 37(8): 3297-3308, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36006574

RESUMEN

The single and associated impressions of photobiomodulation (PBM) and adipose-derived stem cells (ADS) on stereological parameters (SP), and gene expression (GE) of some antioxidant and oxidative stressors of repairing injured skin at inflammation and proliferation steps (days 4 and 8) of a delayed healing, ischemic, and infected wound model (DHIIWM) were examined in type one diabetic (DM1) rats. DM1 was induced by administration of streptozotocin (40 mg/kg) in 48 rats. The DHIIWM was infected by methicillin-resistant Staphylococcus aureus (MRSA). The study comprised 4 groups (each, n = 6): Group 1 was the control group (CG). Group 2 received allograft human (h) ADSs transplanted into the wound. In group 3, PBM (890 nm, 80 Hz, 0.2 J/cm2) was emitted, and in group 4, a combination of PBM+ADS was used. At both studied time points, PBM+ADS, PBM, and ADS significantly decreased inflammatory cell count (p < 0.05) and increased granulation tissue formation compared to CG (p < 0.05). Similarly, there were lower inflammatory cells, as well as higher granulation tissue in the PBM+ADS compared to those of alone PBM and ADS (all, p < 0.001). At both studied time points, the GE of catalase (CAT) and superoxide dismutase (SOD) was remarkably higher in all treatment groups than in CG (p < 0.05). Concomitantly, the outcomes of the PBM+ADS group were higher than the single effects of PBM and ADS (p < 0.05). On day 8, the GE of NADPH oxidase (NOX) 1 and NOX4 was substantially less in the PBM+ADS than in the other groups (p < 0.05). PBM+ADS, PBM, and ADS treatments significantly accelerated the inflammatory and proliferative stages of wound healing in a DIIWHM with MRSA in DM1 rats by decreasing the inflammatory response, and NOX1 and 4 as well; and also increasing granulation tissue formation and SOD and CAT. The associated treatment of PBM+ADS was more effective than the individual impacts of alone PBM and ADS because of the additive anti-inflammatory and proliferative effects of PBM plus ADS treatments.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Trasplante de Células Madre , Aloinjertos , Animales , Antioxidantes , Catalasa , Diabetes Mellitus Experimental/radioterapia , Humanos , Isquemia , Staphylococcus aureus Resistente a Meticilina , NADPH Oxidasas , Estrés Oxidativo , Ratas , Ratas Wistar , Células Madre , Estreptozocina/efectos adversos , Superóxido Dismutasa
11.
Lasers Med Sci ; 37(7): 2805-2815, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35635648

RESUMEN

This review aims to providing essential information and the current knowledge about the potential role of macrophages, especially their M2 subtypes in different diabetic wounds both in clinical and pre-clinical models under the influence of photobiomodulation (PBM). The long-term goal is to advance the macrophage-based therapies to accelerate healing of diabetic foot ulcers. We reviewed all databases provided by PubMed, Google Scholar, Scopus, Web of Science, and Cochrane precisely from their dates of inception to 25/10/2021. The keywords of Diabetes mellitus diseases, wound healing, macrophage, and photobiomodulation or low-level laser therapy were used in this systematic review.A total of 438 articles were initially identified in pubmed.ncbi.nlm.nih.gov (15 articles), Google scholar (398 articles), Scopus (18 articles), and Web of Science (7 articles). Four hundred sixteen articles that remained after duplicate studies (22 articles) were excluded. After screening abstracts and full texts, 14 articles were included in our analysis. Among them, 4 articles were about the effect of PBM on macrophages in type 2 diabetes and also found 10 articles about the impact of PBM on macrophages in type 1 diabetes. The obtained data from most of the reviewed studies affirmed that the PBM alone or combined with other agents (e.g., stem cells) could moderate the inflammatory response and accelerate the wound healing process in pre-clinical diabetic wound models. However, only very few studies conducted the detailed functions of polarized macrophages and M2 subtypes in wound healing of diabetic models under the influence of PBM. Further pre-clinical and clinical investigations are still needed to investigate the role of M2 macrophages, especially its M2c subtype, in the healing processes of diabetic foot ulcers in clinical and preclinical settings.


Asunto(s)
Diabetes Mellitus Tipo 2 , Pie Diabético , Terapia por Luz de Baja Intensidad , Pie Diabético/radioterapia , Humanos , Macrófagos , Cicatrización de Heridas
12.
J Biosci Bioeng ; 133(5): 489-501, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35248486

RESUMEN

Based on its multifactorial nature, successful treatment of diabetic wounds requires combinatorial approach. In this regard, we hypothesized that engraftment of a bioengineered micro-porous three-dimensional human amniotic membrane-scaffold (HAMS) loaded by SDF-1α (SHAMS) in combination with hyperbaric oxygen (HBO), throughout mobilization and recruitment of endothelial progenitor cells (EPCs), could accelerate wound healing in rats with type 1 diabetes mellitus. To test this hypothesis, 30 days after inducting diabetes, an ischemic wound was created in rat skin and treatments were performed for 21 days. In addition to wounded non-diabetic (ND) group, diabetic animals were randomly divided into non-treated (NT-D), HBO-treated (HBO-D), HBO-treated plus HAMS transplantation (HBO+HAMS-D) or HBO-treated in combination with SHAMS transplantation (HBO+SHAMS-D) groups. Our results on post-wounding days 7, 14 and 21 showed that the wound closure, volume of new dermis and epidermis, numerical density of basal cells of epidermis, fibroblasts and blood vessels, number of proliferating cells, deposition of collagen and biomechanical properties of healed wound were considerably higher in both HBO+HAMS-D and HBO+SHAMS-D groups in comparison to those of the NT-D and HBO-D groups, and were the highest in HBO+SHAMS-D ones. The transcripts for Vegf, bFgf, and Tgf-ß genes were significantly upregulated in all treatment regimens compared to NT-D group and were the highest for HBO+SHAMS-D group. This is while expression of Tnf-α and Il-1ß as well as cell density of neutrophil and macrophage decreased more significantly in HBO+SHAMS-D group as compared with NT-D or HBO-D groups. Overall, it was found that using both HAMS transplantation and HBO treatment has more impact on diabetic wound healing. Moreover, SDF-1α loading on HAMS could transiently improve the wound healing process, as compared with the HBO+HAMS-D group on day 7 only.


Asunto(s)
Diabetes Mellitus Experimental , Oxigenoterapia Hiperbárica , Animales , Humanos , Ratas , Amnios/metabolismo , Quimiocina CXCL12/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Oxígeno , Cicatrización de Heridas
13.
Lasers Med Sci ; 37(5): 2457-2470, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35067818

RESUMEN

We assessed the impact of photobiomodulation (PBM) plus adipose-derived stem cells (ASCs) during the anabolic and catabolic stages of bone healing in a rat model of a critical size femoral defect (CSFD) that was filled with a decellularized bone matrix (DBM). Stereological analysis and gene expression levels of bone morphogenetic protein 4 (BMP4), Runt-related transcription factor 2 (RUNX2), and stromal cell-derived factor 1 (SDF1) were determined. There were six groups of rats. Group 1 was the untreated control or DBM. Study groups 2-6 were treated as follows: ASC (ASC transplanted into DBM, then implanted in the CSFD); PBM (CSFD treated with PBM); irradiated ASC (iASC) (ASCs preconditioned with PBM, then transplanted into DBM, and implanted in the CSFD); ASC + PBM (ASCs transplanted into DBM, then implanted in the CSFD, followed by PBM administration); and iASC + PBM (the same as iASC, except CSFDs were exposed to PBM). At the anabolic step, all treatment groups had significantly increased trabecular bone volume (TBV) (24.22%) and osteoblasts (83.2%) compared to the control group (all, p = .000). However, TBV in group iASC + PBM groups were superior to the other groups (97.48% for osteoblast and 58.8% for trabecular bone volume) (all, p = .000). The numbers of osteocytes in ASC (78.2%) and iASC + PBM (30%) groups were remarkably higher compared to group control (both, p = .000). There were significantly higher SDF (1.5-fold), RUNX2 (1.3-fold), and BMP4 (1.9-fold) mRNA levels in the iASC + PBM group compared to the control and some of the treatment groups. At the catabolic step of bone healing, TBV increased significantly in PBM (30.77%), ASC + PBM (32.27%), and iASC + PBM (35.93%) groups compared to the control group (all, p = .000). There were significantly more osteoblasts and osteocytes in ASC (71.7%, 62.02%) (p = .002, p = .000); PBM (82.54%, 156%), iASC (179%, 23%), and ASC + PBM (108%, 110%) (all, p = .000), and iASC + PBM (79%, 100.6%) (p = .001, p = .000) groups compared to control group. ASC preconditioned with PBM in vitro plus PBM in vivo significantly increased stereological parameters and SDF1, RUNX2, and BMP4 mRNA expressions during bone healing in a CSFD model in rats.


Asunto(s)
Huesos , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Terapia por Luz de Baja Intensidad , Células Madre , Tejido Adiposo/citología , Animales , Proteína Morfogenética Ósea 4 , Huesos/lesiones , Quimiocina CXCL12 , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Expresión Génica , Humanos , ARN Mensajero , Ratas
14.
Lasers Med Sci ; 37(1): 403-415, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33738614

RESUMEN

The combined and individual influences of photobiomodulation therapy (PBMT) and arginine on wound strength, stereological parameters, and gene expressions of some related growth factors in ischemic and delayed healing wounds in rats were analyzed. We divided 108 rats into six groups: control, lower energy density (LOW)-PBMT, 2% arginine ointment (Arg 2%), LOW-PBMT + Arg 2%, high energy density (HIGH)-PBMT, and HIGH-PBMT + Arg 2%. First, we generated an ischemic and delayed healing wound model in each rat. We examined wound strength, stereological parameters, and gene expressions of basic fibroblast growth factor (bFGF), vascular endothelial growth factor A (VEGF-A), and stromal cell-derived factor 1 (SDF-1) by quantitative real-time polymerase chain reaction (qRT-PCR). PBMT alone and PBMT + Arg 2% considerably increased wound strength compared to the control and Arg 2% groups during the inflammatory and proliferative steps of wound healing (p < 0.05). In these steps, PBMT alone significantly induced an anti-inflammatory effect and increased fibroblast counts; Arg 2% alone induced an inflammatory response (p < 0.05). Concurrently, PBMT and PBMT + Arg 2% significantly increased keratinocyte counts and volume of the new dermis (p < 0.05). At the remodeling step, the Arg 2% groups had significantly better wound strength than the other groups (p < 0.05). In this step, PBMT and PBMT + Arg 2% significantly decreased inflammation, and increased fibroblast counts, vascular length, and the volume of new epidermis and dermis compared to the control and Arg 2% groups (p < 0.05). In all cases of gene analysis, there were statistically better results in the PBMT and PBMT + Arg 2% groups compared with the Arg 2% and control groups (p < 0.05). The anti-inflammatory and repairing effects of PBMT on an ischemic and delayed healing wound model in rats were shown by significant improvements in wound strength, stereological parameters, and gene expressions of bFGF, VEGF-A, and SDF-1α.


Asunto(s)
Terapia por Luz de Baja Intensidad , Animales , Arginina , Modelos Animales de Enfermedad , Ratas , Factor A de Crecimiento Endotelial Vascular/genética , Cicatrización de Heridas
15.
Lasers Med Sci ; 37(3): 1593-1604, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34476655

RESUMEN

Herein, we report the influence of administering different protocols of preconditioned diabetic adipose-derived mesenchymal stem cells (ADSs) with photobiomodulation in vitro, and photobiomodulation in vivo on the number of mast cells (MCs), their degranulation, and wound strength in the maturation step of a Methicillin-resistant Staphylococcus aureus (MRSA)-infectious wound model in rats with type one diabetes. An MRSA-infectious wound model was generated on diabetic animals, and they were arbitrarily assigned into five groups (G). G1 were control rats. In G2, diabetic ADS were engrafted into the wounds. In G3, diabetic ADS were engrafted into the wound, and the wound was exposed to photobiomodulation (890 nm, 890 ± 10 nm, 80 Hz, 0.2 J/cm2) in vivo. In G4, preconditioned diabetic ADS with photobiomodulation (630 and 810 nm; each 3 times with 1.2 J/cm2) in vitro were engrafted into the wound. In G5, preconditioned diabetic ADS with photobiomodulation were engrafted into the wound, and the wound was exposed to photobiomodulation in vivo. The results showed that, the maximum force in all treatment groups was remarkably greater compared to the control group (all, p = 0.000). Maximum force in G4 and G5 were superior than that other treated groups (both p = 0.000). Moreover, G3, G4, and G5 showed remarkable decreases in completely released MC granules and total numbers of MC compared to G1 and G2 (all, p = 0.000). We concluded that diabetic rats in group 5 showed significantly better results in terms of accelerated wound healing and MC count of an ischemic infected delayed healing wound model.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Staphylococcus aureus Resistente a Meticilina , Animales , Terapia por Luz de Baja Intensidad/métodos , Mastocitos , Ratas , Ratas Wistar , Células Madre
16.
J Lasers Med Sci ; 13: e69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37041783

RESUMEN

Introduction: While a wound caused by a minor cutaneous incision routinely heals in a short time, wounds from major surgical operations might need numerous days to heal and may leave an obvious cicatrix. The use of blue light therapy (BLT) to destroy infectious microorganisms and disrupt biofilm formation could be an efficient method for healing ulcers. This systematic review focused on the effects of BLT in different preclinical in vivo studies and clinical models of skin wound healing. Furthermore, this study attempted to determine what main light parameters should be tested in preclinical and clinical studies. Methods: The online databases PubMed.gov, Google Scholar, Scopus, Web of Science, and Cochrane were searched using the keywords "blue light" and "wound healing" according to PRISMA guidelines. No publication time limit was enforced. Results: A total of 858 articles were identified, and 17 articles in three distinct categories were included for review. They comprised two articles on humans, fourteen articles on healthy animals, and one article on diabetic animals. Conclusion: Some studies have shown that the application of BLT on preclinical and clinical models of wound healing in vivo is able to significantly accelerate the healing process. Few studies, however, have explored the bactericidal effect of BLT on skin injury repair in burn patients. Further preclinical investigations designed to provide a better understanding of the bactericidal effect of BLT using standardized protocols, different BLT wavelengths, and different stages of the wound healing process of infected wounds and ulcers in healthy and diabetic animals should be carried out before clinical trials can be considered. BLT could eventually be a good option for treating infected chronic wounds, including those in diabetic patients.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120157, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34271236

RESUMEN

We studied the effects of photobiomodulation therapy (PBMT) on adipose-derived mesenchymal stem cells (ADSCs) which were extracted from streptozotocin (STZ) induced diabetic rats. Adipose tissue was extracted from the hypodermis of diabetic rats, and diabetic ADSCs were extracted, characterized, and cultured. There were two in vitro groups: control-diabetic ADSCs, and PBMT-diabeticADSCs. We used 630 nm and 810 nm laser at 1.2 J/cm2 with 3 applications 48 h apart. We measured cell viability, apoptosis, population doubling time (PDT), and reactive oxygen species (ROS) by flow cytometry. Gene expression of antioxidants, including cytosolic copper-zinc superoxide dismutase (SOD1), catalase (CAT), total antioxidant capacity (TAC), and oxidative stress biomarkers (NADPH oxidase 1 and 4) by quantitative real time (qRT) - PCR. In this study, data were analyzed using t-test. Viability of PBMT-diabetic- ADSC group was higher than control- diabetic-ADSC (p = 0.000). PDT and apoptosis of PBMT- diabetic-ADSC group were lower than control-diabetic -ADSC (p = 0.001, p = 0.02). SOD1 expression and TAC of PBMT- diabetic-ADSC group were higher than control -diabetic -ADSC (p = 0.018, p = 0.005). CAT of PBMT -diabetic-ADSC group was higher than control-diabetic -ADSC. ROS, NOX1, and NOX4 of PBMT- diabetic -ADSC group were lower than control-diabetic-ADSC (p = 0.002, p = 0.021, p = 0.017). PBMT may improve diabetic- ADSC function in vitro by increasing levels of cell viability, and gene expression of antioxidant agents (SOD1, CAT, and TAC), and significantly decreasing of levels of PDT, apoptosis, ROS, and gene expression of oxidative stress biomarkers (NOX1 and NOX4).


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas , Animales , Antioxidantes , Diabetes Mellitus Experimental/terapia , Estrés Oxidativo , Ratas
18.
Reprod Sci ; 28(10): 2789-2798, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33825170

RESUMEN

About 50% of infertility is caused by men. This study aimed to investigate the efficiency of photobiomodulation on spermatogenesis in a busulfan-induced infertile mouse as a testicular degeneration treatment. Thirty-two adult NMRI male mice were divided into 4 groups: control, busulfan, PBMT 0.03 J/cm2, and laser 0.2 J/cm2. In the study, azoospermia was induced by busulfan as a testicular degeneration, and then, they were treated using photobiomodulation therapy at 0.03 J/cm2 and 0.2 J/cm2 energy densities. Sperm parameters, stereological analysis, serum testosterone levels, together with SDH activity, MDA production oxidized as a marker for lipid peroxidation, glutathione (GSSG) and glutathione (GSH), mitochondrial membrane permeability (MMP), reactive oxygen species (ROS) production, and ATP production as well as TUNEL assay were assessed. Photobiomodulation therapy with 0.03 J/cm2 energy densities group revealed a significant increase the testosterone hormone level and spermatogenic cells with the reduction of apoptotic cells and marked increase in GSH, ATP, and SDH levels and decrease the levels of MDA and ROS production in the busulfan-induced mice when compared with the control and sham groups. In conclusion, the photobiomodulation therapy (0.03 J/cm2 energy density) may provide benefits on the spermatogenesis following busulfan injection and might be an alternative treatment to the patients with oligospermia and azoospermia in a dose-dependent manner.


Asunto(s)
Alquilantes/toxicidad , Busulfano/toxicidad , Infertilidad Masculina/inducido químicamente , Infertilidad Masculina/radioterapia , Terapia por Luz de Baja Intensidad/métodos , Espermatogénesis/fisiología , Animales , Infertilidad Masculina/patología , Masculino , Ratones , Espermatogénesis/efectos de los fármacos
19.
Lasers Med Sci ; 36(2): 375-386, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32696423

RESUMEN

We investigated the probable involvement of mast cell degranulation and their numbers in the remodeling step of wound healing in a diabetic ischemic skin wound model treated with photobiomodulation plus curcumin. A total of 108 adult male Wistar rats were randomized into one healthy control and five diabetic groups. Type I diabetes was inflicted in 90 of the 108 rats. After 1 month, an excisional wound was generated in each of the 108 rats. There were one healthy group (group 1) and five diabetic groups as follows: group 2 was the untreated diabetic control group and group 3 rats were treated with sesame oil. Rats in group 4 were treated with photobiomodulation (890 nm, 890 ± 10 nm, 80 Hz, 0.2 J/cm2) and those in group 5 received curcumin dissolved in sesame oil. Group 6 rats were treated with photobiomodulation and curcumin. We conducted stereological and tensiometric tests on days 4, 7, and 15 after treatment. The results indicated that photobiomodulation significantly improved wound strength in the diabetic rats and significantly decreased the total numbers of mast cells. The diabetic control group had significantly reduced tensiometric properties of the healing wounds and a significant increase in the total numbers of mast cells. Photobiomodulation significantly improved the healing process in diabetic animals and significantly decreased the total number of mast cells. The increased numbers of mast cells in the diabetic control group negatively affected tensiometric properties of the ischemic skin wound.


Asunto(s)
Curcumina/farmacología , Diabetes Mellitus Experimental/patología , Terapia por Luz de Baja Intensidad , Mastocitos/efectos de los fármacos , Mastocitos/efectos de la radiación , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/efectos de la radiación , Animales , Fenómenos Biomecánicos , Recuento de Células , Degranulación de la Célula/efectos de los fármacos , Degranulación de la Célula/efectos de la radiación , Masculino , Mastocitos/fisiología , Ratas Wistar , Estrés Mecánico
20.
Stem Cell Res Ther ; 11(1): 494, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239072

RESUMEN

BACKGROUND: Diabetic foot ulcer is the most costly and complex challenge for patients with diabetes. We hereby assessed the effectiveness of different preconditioned adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation protocols on treating an infected ischemic wound in type 1 diabetic rats. METHODS: There were five groups of rats: (1) control, (2) control AD-MSCs [diabetic AD-MSCs were transplanted (grafted) into the wound bed], (3) AD-MSC + photobiomodulation in vivo (diabetic AD-MSCs were grafted into the wound, followed by in vivo PBM treatment), (4) AD-MSCs + photobiomodulation in vitro, and (5) AD-MSCs + photobiomodulation in vitro + in vivo. RESULTS: Diabetic AD-MSCs preconditioned with photobiomodulation had significantly risen cell function compared to diabetic AD-MSC. Groups 3 and 5 had significantly decreased microbial flora correlated to groups 1 and 2 (all, p = 0.000). Groups 2, 3, 4, and 5 had significantly improved wound closure rate (0.4, 0.4, 0.4, and 0.8, respectively) compared to group 1 (0.2). Groups 2-5 had significantly increased wound strength compared to group 1 (all p = 0.000). In most cases, group 5 had significantly better results than groups 2, 3, and 4. CONCLUSIONS: Preconditioning diabetic AD-MSCs with photobiomodulation in vitro plus photobiomodulation in vivo significantly hastened healing in the diabetic rat model of an ischemic infected delayed healing wound.


Asunto(s)
Diabetes Mellitus Experimental , Terapia por Luz de Baja Intensidad , Trasplante de Células Madre Mesenquimatosas , Cicatrización de Heridas , Animales , Diabetes Mellitus Experimental/terapia , Humanos , Ratas , Ratas Wistar , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA