Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Shock ; 53(1): 63-70, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30998646

RESUMEN

BACKGROUND: A declining selenium (Se) status constitutes a characteristic of critical illness and may affect disease course and survival. The dynamics of trauma-induced changes in biomarkers of Se status are poorly characterized, and an association with multiple organ failure (MOF) and mortality can be hypothesized. It was the aim of this study to investigate Se and selenoprotein P (SELENOP) concentrations in major trauma patients during the early posttraumatic period. PATIENTS AND METHODS: Twenty-four patients after major trauma (ISS ≥16) were included at our level one trauma center. Se supplementation ever during the 90-day observation period was defined as an exclusion criterion. Serum samples were drawn within less than 60 min after trauma, and after 6 h, 12 h, 24 h, 48 h, and 72 h. Serum Se was analyzed by X-ray fluorescence and SELENOP concentrations by ELISA. The data were correlated to clinical parameters, occurrence of MOF defined by MOF and APACHE II score, lung injury defined by Horowitz index and clinical outcome (90-days survival). RESULTS: Serum Se and SELENOP concentrations of the trauma patients were significantly below the average of healthy European subjects (mean ±SD; Se, 41.2±8.1 vs. 84.7±23.3 µg/L, P < 0.001; SePP, 1.5±0.3 vs. 4.3±1.0 mg/L, P < 0.001). A strong deficit was present already at the first time point (Se; 33.6±10.5 µg/L, SELENOP: 1.4±0.5 mg/L). The clinical scores collectively showed an inverse relation between health status and Se biomarkers. Patients who did not survive the 90-day observation period exhibited significantly lower initial post-trauma Se status than the surviving patients (mean±SD; Se, 24.7±7.2 vs. 39.2±8.4 µg/L, P<0.05; SePP, 1.1±0.4 vs. 1.6±0.4 mg/L, P<0.05). CONCLUSION: Very low Se and SELENOP concentrations occur fast after major trauma and are associated with poor survival odds. These findings support the notion that early Se substitution may constitute a meaningful adjuvant treatment strategy in trauma patients.


Asunto(s)
Biomarcadores/sangre , Selenio/sangre , Selenoproteína P/sangre , Heridas y Lesiones/sangre , APACHE , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Heridas y Lesiones/mortalidad , Heridas y Lesiones/patología , Adulto Joven
2.
Br J Nutr ; 116(3): 504-13, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27267586

RESUMEN

Infectious diseases impair Se metabolism, and low Se status is associated with mortality risk in adults with critical disease. The Se status of neonates is poorly characterised, and a potential impact of connatal infection is unknown. We hypothesised that an infection negatively affects the Se status of neonates. We conducted an observational case-control study at three intensive care units at the Charité-Universitätsmedizin Berlin, Germany. Plasma samples were collected from forty-four neonates. On the basis of clinical signs for bacterial infection and concentrations of IL-6 or C-reactive protein, neonates were classified into control (n 23) and infected (n 21) groups. Plasma Se and selenoprotein P (SePP) concentrations were determined by X-ray fluorescence and ELISA, respectively, at day of birth (day 1) and 48 h later (day 3). Se and SePP showed a positive correlation in both groups of neonates. Se concentrations indicative of Se deficit in adults (500 ng/l). During antibiotic therapy, SePP increased significantly from day 1 (1·03 (sd 0·10) mg/l) to day 3 (1·34 (sd 0·10) mg/l), indicative of improved hepatic Se metabolism. We conclude that both Se and SePP are suitable biomarkers for assessing Se status in neonates and for identifying subjects at risk of deficiency.


Asunto(s)
Enfermedades Carenciales/etiología , Infecciones/sangre , Estado Nutricional , Selenio/deficiencia , Selenoproteína P/sangre , Antibacterianos/uso terapéutico , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Enfermedades Carenciales/sangre , Femenino , Alemania , Humanos , Recién Nacido , Infecciones/tratamiento farmacológico , Interleucina-6/sangre , Hígado/metabolismo , Masculino , Selenio/sangre
3.
Thyroid ; 25(8): 962-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25962824

RESUMEN

BACKGROUND: Deiodinases (DIO1, 2, and 3) are key enzymes in thyroid hormone (TH) activation and inactivation with impact on energy metabolism, development, cell differentiation, and a number of other physiological processes. The three DIO isoenzymes thus constitute sensitive rate-limiting components within the TH axis, prone to dysregulation by endocrine disruptive compounds or disease state. In animal models and cell culture experiments, they serve as readout for local TH status and disarrangement of the hormonal axis. Furthermore, some human diseases are characterized by apparent deiodinase dysregulation (e.g., the low triiodothyronine syndrome in critical illness). Consequently, these enzymes are targets of interest for the development of pharmacological compounds with modulatory activities. Until now, the portfolio of inhibitors for these enzymes is limited. In the clinics, the DIO1-specific inhibitor propylthiouracil is in use for treatment of severe hyperthyroidism. Other well-known inhibitors (e.g., iopanoic acid or aurothioglucose) are nonselective and block all three isoenzymes. Furthermore, DIO3 was shown to be a potential oncogenic gene, which is strongly expressed in some tumors and might, in consequence, protect tumor tissue form differentiation by TH. With respect to its role in tumorigenesis, specific inhibitors of DIO3 as a potential target for anticancer drugs would be highly desirable. To this end, a flexible and convenient assay for high-throughput screening is needed. We recently described a nonradioactive screening assay, utilizing the classic Sandell-Kolthoff reaction as readout for iodide release from the substrate molecules. While we used murine liver as enzyme source, the assay was limited to murine DIO1 activity testing. Here, we describe the use of recombinant proteins as enzyme sources within the assay, expanding its suitability from murine Dio1 to human DIO1, DIO2, and DIO3. METHODS: As proof-of-concept, deiodination reactions catalyzed by these recombinant enzymes were monitored with various nonradioactive substrates and confirmed by liquid chromatography-tandem mass spectrometry. RESULTS: The contrast agent and known DIO inhibitor iopanoic acid was characterized as readily accepted substrate by DIO2 and Dio3. In a screening approach using established endocrine disrupting compounds, the natural food ingredient genistein was identified as a further DIO1-specific inhibitor, while xanthohumol turned out to potently block the activity of all three isoenzymes. CONCLUSIONS: A rapid nonradioactive screening method based on the Sandell-Kolthoff reaction is suitable for identification of environmental, nutritive and pharmacological compounds modulating activities of human deiodinase enzymes.


Asunto(s)
Flavonoides/uso terapéutico , Genisteína/uso terapéutico , Yoduro Peroxidasa/antagonistas & inhibidores , Propiofenonas/uso terapéutico , Animales , Catálisis , Diferenciación Celular , Cromatografía Liquida , Proteínas de Unión al ADN/química , Evaluación Preclínica de Medicamentos , Enzimas/química , Células HEK293 , Humanos , Concentración 50 Inhibidora , Yoduro Peroxidasa/química , Ácido Yopanoico/química , Isoenzimas/química , Espectrometría de Masas , Ratones , Sistemas de Lectura Abierta , Proteínas Recombinantes/química , Hormonas Tiroideas/química , Yodotironina Deyodinasa Tipo II
4.
Int J Cancer ; 136(5): 1149-61, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25042282

RESUMEN

Suboptimal intakes of the micronutrient selenium (Se) are found in many parts of Europe. Low Se status may contribute to colorectal cancer (CRC) development. We assessed Se status by measuring serum levels of Se and Selenoprotein P (SePP) and examined the association with CRC risk in a nested case-control design (966 CRC cases; 966 matched controls) within the European Prospective Investigation into Cancer and Nutrition. Se was measured by total reflection X-ray fluorescence and SePP by immunoluminometric sandwich assay. Multivariable incidence rate ratios (IRRs) and 95% confidence intervals (CIs) were calculated using conditional logistic regression. Respective mean Se and SePP levels were 84.0 µg/L and 4.3 mg/L in cases and 85.6 µg/L and 4.4 mg/L in controls. Higher Se concentrations were associated with a non-significant lower CRC risk (IRR = 0.92, 95% CI: 0.82-1.03 per 25 µg/L increase). However, sub-group analyses by sex showed a statistically significant association for women (p(trend) = 0.032; per 25 µg/L Se increase, IRR = 0.83, 95% CI: 0.70-0.97) but not for men. Higher SePP concentrations were inversely associated with CRC risk (p(trend) = 0.009; per 0.806 mg/L increase, IRR = 0.89, 95% CI: 0.82-0.98) with the association more apparent in women (p(trend) = 0.004; IRR = 0.82, 95% CI: 0.72-0.94 per 0.806 mg/L increase) than men (p(trend) = 0.485; IRR = 0.98, 95% CI: 0.86-1.12 per 0.806 mg/L increase). The findings indicate that Se status is suboptimal in many Europeans and suggest an inverse association between CRC risk and higher serum Se status, which is more evident in women.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias Colorrectales/etiología , Selenio/sangre , Selenoproteína P/sangre , Adulto , Anciano , Estudios de Casos y Controles , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/epidemiología , Europa (Continente)/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estado Nutricional , Pronóstico , Estudios Prospectivos , Curva ROC , Factores de Riesgo , Espectrometría por Rayos X
5.
Metallomics ; 6(5): 1079-86, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24700164

RESUMEN

Selenium deficiency constitutes a risk factor for the incidence and negative course of severe diseases including sepsis, stroke, autoimmune diseases or cancer. In this study, hypoxia is identified as a powerful stimulus to redirect selenoprotein biosynthesis causing reduced selenoprotein P expression and diminished selenium export from hepatocytes in favour of increased biosynthesis of the essential protective intracellular phospholipid hydroperoxide glutathione peroxidase GPX4. Specifically, hypoxia decreases transcript concentrations of central factors controlling selenium and selenocysteine metabolism including selenophosphate synthetase-2, phosphoseryl-tRNA(SerSec) kinase and selenocysteine lyase, which are all proven to be rate-limiting enzymes in selenoprotein biosynthesis. These effects are paralleled by a general decline of selenoprotein expression; however, not all selenoproteins are affected to the same extent by hypoxia, and GPX4 constitutes an exception as its expression becomes slightly increased. Supplemental selenium is able to overcome the hypoxia-dependent down regulation of selenoprotein expression in our cell culture model system, supporting the concept of using selenium as an adjuvant treatment option in severe diseases. Although it remains to be tested whether these effects constitute a hepatocyte-specific response, the selenium-dependent decline of selenoprotein P biosynthesis under hypoxic conditions may explain the progressive selenium deficit developing in severe diseases.


Asunto(s)
Selenoproteínas/biosíntesis , Células Cultivadas , Glutatión Peroxidasa/metabolismo , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos , Selenio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA