Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Prev Med ; 66(6): 1078-1088, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38309672

RESUMEN

INTRODUCTION: Physical activity (PA) promotion combined with multimicronutrient supplementation (MMNS) among school-age children may reduce fat mass accrual and increase muscle mass through different mechanisms and so benefit child health. This study determined the efficacy of combined interventions on body composition among South African schoolchildren and determined if micronutrients mediate these effects. STUDY DESIGN: Longitudinal cluster randomized controlled trial of children followed from 2019 to 2021. Statistical analyses carried from 2022 to 2023. SETTING/PARTICIPANTS: A total of 1,304 children 6-12 years of age recruited from public schools in Gqeberha, South Africa. INTERVENTION: Children were randomized by classes to either: (a) a physical activity group (PA); (b) a MMNS group; (c) a physical activity + multimicronutrient supplementation group (PA + MMNS); and (d) a placebo control group. MAIN OUTCOME MEASURES: Trajectories of overall and truncal fat free mass (FFM) and fat mass (FM) estimates in modeled at 9 and 21 months using latent growth curve models (LGCM). Changes in micronutrient concentrations at 9 months from baseline. RESULTS: An increased FFM trajectory was found among children in the MMNS arm at 9 months (Beta 0.16, 95% CI = 0.12, 0.31). The PA and MMNS arms both had positive indirect effects on this trajectory at 9 months (Beta 0.66, 95% CI = 0.44, 0.88 and Beta 0.32 95% CI = 0.1 0.5, respectively) and similarly at 21 months when mediated by zinc concentration changes. A reduced FM trajectory was found among children in the PA promotion arm at 9 months when using this collection point as the referent intercept. This arm was inversely associated with the FM trajectory at 9 months when mediated by zinc changes. CONCLUSIONS: PA and MMNS promotion in school-based interventions directly contributed to reductions in FM and increased FFM among South African children and indirectly through changes in micronutrient status. TRIAL REGISTRATION: ISRCTN, ISRCTN29534081. Registered on August 9, 2018 Institutional review board: Ethikkommission Nordwest- und Zentralschweiz" (EKNZ, project number: Req-2018-00608). Date of approval: 2018.


Asunto(s)
Composición Corporal , Suplementos Dietéticos , Ejercicio Físico , Micronutrientes , Humanos , Sudáfrica , Micronutrientes/administración & dosificación , Niño , Masculino , Femenino , Ejercicio Físico/fisiología , Estudios Longitudinales
2.
Nutrients ; 14(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807790

RESUMEN

Executive functions (EFs) are essential for optimal academic development. Appropriate nutrition and physical activity (PA) have been shown to facilitate optimal cognitive development. Therefore, this study examined whether a 12-week school-based PA and multi-micronutrient supplementation (MMNS) intervention would improve cognitive and academic performance. A cluster-randomized controlled trial (RCT) was conducted. Children from four schools located in a peri-urban area of South Africa were randomly assigned to (i) PA + MMNS, (ii) PA + placebo, (iii) MMNS or (iv) placebo. Information processing and inhibitory control were measured with a computerized Flanker task. End-of-year results provided insight into academic achievement. Anthropometric measures were used to determine nutritional status. Data were analyzed with linear mixed-models, adjusting for baseline scores, school classes and age; 932 children (458 girls (49.1%), Mage (mean age) = 8.42 ± 1.94 years) completed baseline and post-intervention assessments. Cognitive performance improved among all four groups, with no significant group × time effects. For academic achievement, there was no significant interaction effect between the combined intervention group and placebo. We encourage future studies in this neglected area in order to determine the most optimal design of school-based nutrition and PA programs to enhance overall cognitive performance.


Asunto(s)
Rendimiento Académico , Micronutrientes , Niño , Cognición , Ejercicio Físico , Femenino , Humanos , Sudáfrica
3.
BMC Med ; 20(1): 27, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35081959

RESUMEN

BACKGROUND: The prevalence of overweight and obesity is increasing among African children potentially predisposing them to greater obesity and non-communicable diseases (NCDs) in adulthood. This risk may be higher among growth-impaired children who may have greater fat mass. Therefore, we examined the effects of school-based physical activity (PA) promotion and multi-micronutrient supplementation (MMNS) on body composition among South African children enrolled in a longitudinal school-based randomized controlled trial. METHODS: Children were cluster-randomized by class to one of four groups: (a) a physical activity group (PA), (b) a multi-micronutrient supplementation group (MMNS), (c) a physical activity + multi-micronutrient supplementation group (PA + MMNS), and (d) control group, and were being followed for 3 years. Linear random effects regression models with random intercepts for school classes tested the associations of each intervention arm with overall fat mass (FM), fat-free mass (FFM), truncal fat mass (TrFM), and truncal fat-free mass (TrFFM) at 9 months (T2) for boys and girls. These differences were then explored among children who differed in height velocity (HV). RESULTS: A total of 1304 children (614 girls, 667 boys) in twelve clusters were assessed at baseline and after 9 months follow-up (T2). At baseline, approximately 15% of children were classified as overweight or obese while approximately 38% of children were classified as mildly stunted or moderately/severely stunted. Among girls, promotion of PA was associated with reduced FM and TrFM at T2 while MMNS was associated with increased FFM. Children with reduced HV in the PA arm had reduced FM while children in the MMNS arm with lower HV had increased FM compared to children in the control arm. Similarly, children with lower HV in the MM and PA groups had reduced TrFM compared to children in the control arm. CONCLUSIONS: Our study suggests that the promotion of school-based physical activity programs and micronutrient supplementation can reduce childhood adiposity and so reduce the risk of obesity and chronic diseases later in adulthood. TRIAL REGISTRATION: ISRCTN, ISRCTN29534081 . Registered on August 9, 2018. The trial was designed, analyzed, and interpreted based on the CONSORT protocol (Additional file 1: CONSORT checklist for randomized trial).


Asunto(s)
Composición Corporal , Obesidad Infantil , Adulto , Estatura , Índice de Masa Corporal , Niño , Ejercicio Físico , Femenino , Promoción de la Salud/métodos , Humanos , Masculino , Obesidad Infantil/epidemiología , Obesidad Infantil/prevención & control , Sudáfrica/epidemiología
4.
Trials ; 21(1): 22, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907019

RESUMEN

BACKGROUND: In low- and middle-income countries, infectious diseases remain a key public health issue. Additionally, non-communicable diseases are a rapidly growing public health problem that impose a considerable burden on population health. One way to address this dual disease burden, is to incorporate (lifestyle) health promotion measures within the education sector. In the planned study, we will (i) assess and compare physical activity, physical fitness, micronutrient status, body composition, infections with soil-transmitted helminths, Schistosoma mansoni, malaria, inflammatory and cardiovascular health risk markers, cognitive function, health-related quality of life, and sleep in schoolchildren in Côte d'Ivoire, South Africa and Tanzania. We will (ii) determine the bi- and multivariate associations between these variables and (iii) examine the effects of a school-based health intervention that consists of physical activity, multi-micronutrient supplementation, or both. METHODS: Assuming that no interaction occurs between the two interventions (physical activity and multi-micronutrient supplementation), the study is designed as a cluster-randomised, placebo-controlled trial with a 2 × 2 factorial design. Data will be obtained at three time points: at baseline and at 9 months and 21 months after the baseline assessment. In each country, 1320 primary schoolchildren from grades 1-4 will be recruited. In each school, classes will be randomly assigned to one of four interventions: (i) physical activity; (ii) multi-micronutrient supplementation; (iii) physical activity plus multi-micronutrient supplementation; and (iv) no intervention, which will serve as the control. A placebo product will be given to all children who do not receive multi-micronutrient supplementation. After obtaining written informed consent from the parents/guardians, the children will be subjected to anthropometric, clinical, parasitological and physiological assessments. Additionally, fitness tests will be performed, and children will be invited to wear an accelerometer device for 7 days to objectively assess their physical activity. Children infected with S. mansoni and soil-transmitted helminths will receive deworming drugs according to national policies. Health and nutrition education will be provided to the whole study population independently of the study arm allocation. DISCUSSION: The study builds on the experience and lessons of a previous study conducted in South Africa. It involves three African countries with different social-ecological contexts to investigate whether results are generalisable across the continent. TRIAL REGISTRATION: The study was registered on August 9, 2018, with ISRCTN. https://doi.org/10.1186/ISRCTN29534081.


Asunto(s)
Salud Infantil , Suplementos Dietéticos , Ejercicio Físico/fisiología , Educación en Salud/organización & administración , Instituciones Académicas/organización & administración , Acelerometría , Antihelmínticos/uso terapéutico , Niño , Desarrollo Infantil/fisiología , Protección a la Infancia , Côte d'Ivoire , Femenino , Helmintiasis/diagnóstico , Helmintiasis/tratamiento farmacológico , Helmintiasis/prevención & control , Humanos , Masculino , Micronutrientes/administración & dosificación , Aptitud Física/fisiología , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Sudáfrica , Tanzanía , Resultado del Tratamiento
5.
Oxid Med Cell Longev ; 2017: 3079148, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28133504

RESUMEN

Obesity as a multifactorial disorder involves low-grade inflammation, increased reactive oxygen species incidence, gut microbiota aberrations, and epigenetic consequences. Thus, prevention and therapies with epigenetic active antioxidants, (-)-Epigallocatechin-3-gallate (EGCG), are of increasing interest. DNA damage, DNA methylation and gene expression of DNA methyltransferase 1, interleukin 6, and MutL homologue 1 were analyzed in C57BL/6J male mice fed a high-fat diet (HFD) or a control diet (CD) with and without EGCG supplementation. Gut microbiota was analyzed with quantitative real-time polymerase chain reaction. An induction of DNA damage was observed, as a consequence of HFD-feeding, whereas EGCG supplementation decreased DNA damage. HFD-feeding induced a higher inflammatory status. Supplementation reversed these effects, resulting in tissue specific gene expression and methylation patterns of DNA methyltransferase 1 and MutL homologue 1. HFD feeding caused a significant lower bacterial abundance. The Firmicutes/Bacteroidetes ratio is significantly lower in HFD + EGCG but higher in CD + EGCG compared to control groups. The results demonstrate the impact of EGCG on the one hand on gut microbiota which together with dietary components affects host health. On the other hand effects may derive from antioxidative activities as well as epigenetic modifications observed on CpG methylation but also likely to include other epigenetic elements.


Asunto(s)
Antioxidantes/farmacología , Catequina/análogos & derivados , Metilación de ADN/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Animales , Catequina/farmacología , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , Daño del ADN/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Homólogo 1 de la Proteína MutL/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA