Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 145(7): 2332-2346, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35134125

RESUMEN

Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.


Asunto(s)
Epilepsia Tipo Ausencia , Hipoglucemia , Proteínas Quinasas Activadas por AMP/metabolismo , Epilepsia Tipo Ausencia/metabolismo , Humanos , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Receptores de GABA-B/metabolismo , Convulsiones , Tálamo
2.
Elife ; 92020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32902384

RESUMEN

Absence seizures result from 3 to 5 Hz generalized thalamocortical oscillations that depend on highly regulated inhibitory neurotransmission in the thalamus. Efficient reuptake of the inhibitory neurotransmitter GABA is essential, and reuptake failure worsens human seizures. Here, we show that blocking GABA transporters (GATs) in acute rat brain slices containing key parts of the thalamocortical seizure network modulates epileptiform activity. As expected, we found that blocking either GAT1 or GAT3 prolonged oscillations. However, blocking both GATs unexpectedly suppressed oscillations. Integrating experimental observations into single-neuron and network-level computational models shows how a non-linear dependence of T-type calcium channel gating on GABAB receptor activity regulates network oscillations. Receptor activity that is either too brief or too protracted fails to sufficiently open T-type channels necessary for sustaining oscillations. Only within a narrow range does prolonging GABAB receptor activity promote channel opening and intensify oscillations. These results have implications for therapeutics that modulate inhibition kinetics.


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Modelos Neurológicos , Neuronas/fisiología , Tálamo/fisiología , Animales , Células Cultivadas , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de GABA-B/metabolismo , Convulsiones/metabolismo
3.
Brain Res ; 1703: 41-52, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29288644

RESUMEN

Voluntary hyperventilation triggers seizures in the vast majority of people with absence epilepsy. The mechanisms that underlie this phenomenon remain unknown. Herein, we review observations - many made long ago - that provide insight into the relationship between breathing and absence seizures.


Asunto(s)
Epilepsia Tipo Ausencia/metabolismo , Hiperventilación/metabolismo , Convulsiones/etiología , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Humanos , Respiración , Tálamo/metabolismo
4.
J Neurosci ; 38(5): 1232-1248, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29273603

RESUMEN

Maintenance of a low intracellular Cl- concentration ([Cl-]i) is critical for enabling inhibitory neuronal responses to GABAA receptor-mediated signaling. Cl- transporters, including KCC2, and extracellular impermeant anions ([A]o) of the extracellular matrix are both proposed to be important regulators of [Cl-]i Neurons of the reticular thalamic (RT) nucleus express reduced levels of KCC2, indicating that GABAergic signaling may produce excitation in RT neurons. However, by performing perforated patch recordings and calcium imaging experiments in rats (male and female), we find that [Cl-]i remains relatively low in RT neurons. Although we identify a small contribution of [A]o to a low [Cl-]i in RT neurons, our results also demonstrate that reduced levels of KCC2 remain sufficient to maintain low levels of Cl- Reduced KCC2 levels, however, restrict the capacity of RT neurons to rapidly extrude Cl- following periods of elevated GABAergic signaling. In a computational model of a local RT network featuring slow Cl- extrusion kinetics, similar to those we found experimentally, model RT neurons are predisposed to an activity-dependent switch from GABA-mediated inhibition to excitation. By decreasing the activity threshold required to produce excitatory GABAergic signaling, weaker stimuli are able to propagate activity within the model RT nucleus. Our results indicate the importance of even diminished levels of KCC2 in maintaining inhibitory signaling within the RT nucleus and suggest how this important activity choke point may be easily overcome in disorders such as epilepsy.SIGNIFICANCE STATEMENT Precise regulation of intracellular Cl- levels ([Cl-]i) preserves appropriate, often inhibitory, GABAergic signaling within the brain. However, there is disagreement over the relative contribution of various mechanisms that maintain low [Cl-]i We found that the Cl- transporter KCC2 is an important Cl- extruder in the reticular thalamic (RT) nucleus, despite this nucleus having remarkably low KCC2 immunoreactivity relative to other regions of the adult brain. We also identified a smaller contribution of fixed, impermeant anions ([A]o) to lowering [Cl-]i in RT neurons. Inhibitory signaling among RT neurons is important for preventing excessive activation of RT neurons, which can be responsible for generating seizures. Our work suggests that KCC2 critically restricts the spread of activity within the RT nucleus.


Asunto(s)
Neuronas GABAérgicas/fisiología , Formación Reticular/fisiología , Transducción de Señal/fisiología , Tálamo/fisiología , Animales , Cloruros/metabolismo , Cloruros/farmacología , Simulación por Computador , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/fisiología , Simportadores/genética , Simportadores/fisiología , Cotransportadores de K Cl
5.
J Neurosci ; 35(4): 1481-92, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25632125

RESUMEN

Prevailing literature supports the idea that common general anesthetics (GAs) cause long-term cognitive changes and neurodegeneration in the developing mammalian brain, especially in the thalamus. However, the possible role of GAs in modifying ion channels that control neuronal excitability has not been taken into consideration. Here we show that rats exposed to GAs at postnatal day 7 display a lasting reduction in inhibitory synaptic transmission, an increase in excitatory synaptic transmission, and concomitant increase in the amplitude of T-type calcium currents (T-currents) in neurons of the nucleus reticularis thalami (nRT). Collectively, this plasticity of ionic currents leads to increased action potential firing in vitro and increased strength of pharmacologically induced spike and wave discharges in vivo. Selective blockade of T-currents reversed neuronal hyperexcitability in vitro and in vivo. We conclude that drugs that regulate thalamic excitability may improve the safety of GAs used during early brain development.


Asunto(s)
Anestesia General , Corteza Cerebral , Vías Nerviosas/fisiología , Tálamo , 4-Butirolactona/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Benzamidas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Epilepsia/inducido químicamente , Epilepsia/fisiopatología , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Potenciales Evocados Somatosensoriales/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Vías Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Tálamo/citología , Tálamo/efectos de los fármacos , Tálamo/crecimiento & desarrollo
6.
J Neurosci ; 30(45): 15262-76, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21068331

RESUMEN

The long-lasting actions of the inhibitory neurotransmitter GABA result from the activation of metabotropic GABA(B) receptors. Enhanced GABA(B)-mediated IPSCs are critical for the generation of generalized thalamocortical seizures. Here, we demonstrate that GABA(B)-mediated IPSCs recorded in the thalamus are primarily defined by GABA diffusion and activation of distal extrasynaptic receptors potentially up to tens of micrometers from synapses. We also show that this diffusion is differentially regulated by two astrocytic GABA transporters, GAT1 and GAT3, which are localized near and far from synapses, respectively. A biologically constrained model of GABA diffusion and uptake shows how the two GATs differentially modulate amplitude and duration of GABA(B) IPSCs. Specifically, the perisynaptic expression of GAT1 enables it to regulate GABA levels near synapses and selectively modulate peak IPSC amplitude, which is primarily dependent on perisynaptic receptor occupancy. GAT3 expression, however, is broader and includes distal extrasynaptic regions. As such, GAT3 acts as a gatekeeper to prevent diffusion of GABA away from synapses toward extrasynaptic regions that contain a potentially enormous pool of GABA(B) receptors. Targeting this gatekeeper function may provide new pharmacotherapeutic opportunities to prevent the excessive GABA(B) receptor activation that appears necessary for thalamic seizure generation.


Asunto(s)
Astrocitos/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Receptores de GABA-B/fisiología , Tálamo/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Electrofisiología , Proteínas Transportadoras de GABA en la Membrana Plasmática/fisiología , Inmunohistoquímica , Inhibición Neural/fisiología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
7.
J Neurophysiol ; 102(5): 2880-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19741104

RESUMEN

The generation of prolonged neuronal activity depends on the maintenance of synaptic neurotransmitter pools. The astrocytic glutamate-glutamine cycle is a major mechanism for recycling the neurotransmitters GABA and glutamate. Here we tested the effect of disrupting the glutamate-glutamine cycle on two types of neuronal activity patterns in the thalamus: sleep-related spindles and epileptiform oscillations. In recording conditions believed to induce glutamine scarcity, epileptiform oscillations showed a progressive reduction in duration that was partially reversible by the application of exogenous glutamine (300 muM). Blocking uptake of glutamine into neurons with alpha-(methylamino) isobutyric acid (5 mM) caused a similar reduction in oscillation duration, as did blocking neuronal GABA synthesis with 3-mercaptoproprionic acid (10 muM). However, comparable manipulations did not affect sleep spindles. Together, these results support a crucial role for the glutamate-glutamine cycle in providing the neurotransmitters necessary for the generation of epileptiform activity and suggest potential therapeutic approaches that selectively reduce seizure activity but maintain normal neuronal activity.


Asunto(s)
Potenciales de Acción/fisiología , Astrocitos/fisiología , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Neuronas/fisiología , Tálamo/citología , Ácido 3-Mercaptopropiónico/farmacología , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Astrocitos/efectos de los fármacos , Bicuculina/análogos & derivados , Bicuculina/farmacología , Convulsivantes/farmacología , Femenino , Ácido Glutámico/farmacología , Glutamina/farmacología , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
8.
J Neurophysiol ; 102(1): 203-13, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19386752

RESUMEN

Rhythmic oscillations throughout the cortex are observed during physiological and pathological states of the brain. The thalamus generates sleep spindle oscillations and spike-wave discharges characteristic of absence epilepsy. Much has been learned regarding the mechanisms underlying these oscillations from in vitro brain slice preparations. One widely used model to understand the epileptiform oscillations underlying absence epilepsy involves application of bicuculline methiodide (BMI) to brain slices containing the thalamus. BMI is a well-known GABAA receptor blocker that has previously been discovered to also block small-conductance, calcium-activated potassium (SK) channels. Here we report that the robust epileptiform oscillations observed during BMI application rely synergistically on both GABAA receptor and SK channel antagonism. Neither application of picrotoxin, a selective GABAA receptor antagonist, nor application of apamin, a selective SK channel antagonist, alone yielded the highly synchronized, long-lasting oscillations comparable to those observed during BMI application. However, partial blockade of SK channels by subnanomolar concentrations of apamin combined with picrotoxin sufficiently replicated BMI oscillations. We found that, at the cellular level, apamin enhanced the intrinsic excitability of reticular nucleus (RT) neurons but had no effect on relay neurons. This work suggests that regulation of RT excitability by SK channels can influence the excitability of thalamocortical networks and may illuminate possible pharmacological treatments for absence epilepsy. Finally, our results suggest that changes in the intrinsic properties of individual neurons and changes at the circuit level can robustly modulate these oscillations.


Asunto(s)
Relojes Biológicos/fisiología , Corteza Cerebral/fisiología , Receptores de GABA-A/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Tálamo/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Apamina/farmacología , Bicuculina/análogos & derivados , Bicuculina/farmacología , Relojes Biológicos/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Estimulación Eléctrica/métodos , Antagonistas del GABA/farmacología , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Vías Nerviosas/fisiología , Técnicas de Placa-Clamp/métodos , Picrotoxina/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Tálamo/citología , Tálamo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA