Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer Ther ; 19(7): 1550-1561, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32393472

RESUMEN

Glioma is one of the most common primary malignant tumors of the central nervous system accounting for approximately 40% of all intracranial tumors. Temozolomide is a conventional chemotherapy drug for adjuvant treatment of patients with high-risk gliomas, including grade II to grade IV. Our bioinformatic analysis of The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets and immunoblotting assay show that SLC12A2 gene and its encoded Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) protein are abundantly expressed in grade II-IV gliomas. NKCC1 regulates cell volume and intracellular Cl- concentration, which promotes glioma cell migration, resistance to temozolomide, and tumor-related epilepsy in experimental glioma models. Using mouse syngeneic glioma models with intracranial transplantation of two different glioma cell lines (GL26 and SB28), we show that NKCC1 protein in glioma tumor cells as well as in tumor-associated reactive astrocytes was significantly upregulated in response to temozolomide monotherapy. Combination therapy of temozolomide with the potent NKCC1 inhibitor bumetanide reduced tumor proliferation, potentiated the cytotoxic effects of temozolomide, decreased tumor-associated reactive astrogliosis, and restored astrocytic GLT-1 and GLAST glutamate transporter expression. The combinatorial therapy also led to suppressed tumor growth and prolonged survival of mice bearing GL26 glioma cells. Taken together, these results demonstrate that NKCC1 protein plays multifaceted roles in the pathogenesis of glioma tumors and presents as a therapeutic target for reducing temozolomide-mediated resistance and tumor-associated astrogliosis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/patología , Gliosis/prevención & control , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Temozolomida/farmacología , Animales , Antineoplásicos Alquilantes , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Tamaño de la Célula , Femenino , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Gliosis/genética , Gliosis/metabolismo , Gliosis/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Pronóstico , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Neurosci ; 34(10): 3743-55, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24599472

RESUMEN

In this study, we investigated the development of endoplasmic reticulum (ER) stress after traumatic brain injury (TBI) and the efficacy of post-TBI administration of docosahexaenoic acid (DHA) in reducing ER stress. TBI was induced by cortical contusion injury in Sprague-Dawley rats. Either DHA (16 mg/kg in DMSO) or vehicle DMSO (1 ml/kg) was administered intraperitoneally at 5 min after TBI, followed by a daily dose for 3-21 d. TBI triggered sustained expression of the ER stress marker proteins including phosphorylated eukaryotic initiation factor-2α, activating transcription factor 4, inositol requiring kinase 1, and C/EBP homologous protein in the ipsilateral cortex at 3-21 d after TBI. The prolonged ER stress was accompanied with an accumulation of abnormal ubiquitin aggregates and increased expression of amyloid precursor protein (APP) and phosphorylated tau (p-Tau) in the frontal cortex after TBI. The ER stress marker proteins were colocalized with APP accumulation in the soma. Interestingly, administration of DHA attenuated all ER stress marker proteins and reduced the accumulation of both ubiquitinated proteins and APP/p-Tau proteins. In addition, the DHA-treated animals exhibited early recovery of their sensorimotor function after TBI. In summary, our study demonstrated that TBI induces a prolonged ER stress, which is positively correlated with abnormal APP accumulation. The sustained ER stress may play a role in chronic neuronal damage after TBI. Our findings illustrate that post-TBI administration of DHA has therapeutic potentials in reducing ER stress, abnormal protein accumulation, and neurological deficits.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Lesiones Encefálicas/metabolismo , Ácidos Docosahexaenoicos/uso terapéutico , Estrés del Retículo Endoplásmico/fisiología , Neuronas/metabolismo , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Animales , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/patología , Ácidos Docosahexaenoicos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Masculino , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Proteínas tau/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA