Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 902102, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865965

RESUMEN

Osteoporosis (OP) is an aging-related disease that is the main etiology of fragility fracture. Qing'e Pill (QEP) is a mixture of traditional Chinese medicine (TCM) consisting of Eucommia ulmoides Oliv., Psoralea corylifolia L., Juglans regia L., and Allium sativum L. QEP has an anti-osteoporosis function, but the underlying mechanism remains unclear. In this study, online databases were employed to determine the chemical compounds of QEP and potential target genes in osteoporosis. Potential pathways associated with genes were defined by Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases. A compound-target-disease network was constructed. Hub genes screened through Cytoscape were intersected with the FerrDB database. The potential key genes were validated in HFOB 1.19 cells, and rat models were ovariectomized through Western blot, RT-qPCR, ELISA, HE staining, immunohistochemistry, and immunofluorescence analyses. The intersection targets of QEP and osteoporosis contained 121 proteins, whereas the target-pathway network included 156 pathways. We filtered five genes that stood out in the network analysis for experimental verification. The experiments validated that QEP exerted therapeutic effects on osteoporosis by inhibiting ferroptosis and promoting cell survival via the PI3K/AKT pathway and ATM. In conclusion, combining the application of network analysis and experimental verification may provide an efficient method to validate the molecular mechanism of QEP on osteoporosis.

2.
Cancer Lett ; 518: 23-34, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34126196

RESUMEN

The malignant transformation of residual hepatocellular carcinoma (HCC) cells after thermal ablation is considered as the main factor promoting postoperative HCC progression, which greatly limits the improvement of long-term survival, and at present there is no effective targeted therapeutic strategies. The Warburg effect is a metabolic feature correlated highly with malignant transformation (e.g. epithelial-to-mesenchymal transition [EMT]). Here, we showed that sublethal heat stress triggered a stronger Warburg effect of HCC cells, which contributed to the thermotolerance and invasion of HCC cells. Sublethal heat stress-induced O-GlcNAcylation was involved in this process. Such enhanced Warburg effect in HCC cells may be eliminated through O-GlcNAcylation inhibition, resulting in impaired thermotolerance and EMT, and thereby preventing tumor recurrence and metastasis of HCC-bearing mice after insufficient thermal ablation. Finally, we present evidence that sublethal heat stress-induced O-GlcNAcylation regulates the Warburg effect in HCC cells by promoting hypoxia-inducible factor 1α (HIF-1α) stability. In conclusion, the present study suggests that O-GlcNAcylation coordinates the Warburg effect to promote HCC progression after thermal ablation, which may serve as a novel potential target for controlling postoperative HCC recurrence and metastasis.


Asunto(s)
Acilación/fisiología , Carcinoma Hepatocelular/patología , Respuesta al Choque Térmico/fisiología , Neoplasias Hepáticas/patología , Recurrencia Local de Neoplasia/patología , Animales , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Transición Epitelial-Mesenquimal/fisiología , Humanos , Hipertermia Inducida/métodos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Recurrencia Local de Neoplasia/metabolismo , Efecto Warburg en Oncología
3.
PLoS One ; 13(9): e0202885, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30212470

RESUMEN

Osteoporosis (OP) is a systemic skeletal disorder, manifesting with a reduction in bone mass and deterioration of the microarchitecture. Mesenchymal stem cells (MSCs) have an innate ability to differentiate into several cell types, including osteoblasts (OB). Ginsenoside Rb1 (GRb1) is an ethanol extract from ginseng and contains a highly concentrated form of ginsenoside. GRb1 shows extensive beneficial health effects such as anti-oxidative and anti-inflammatory functions, modulating the immune system and inhibiting osteoclastogenesis. We hypothesized that GRb1 can promote MSC differentiation into OBs and inhibit bone loss. In the present study, we aimed to address two questions: (1) Will GRb1 have a positive effect on osteogenic differentiation of MSCs? and (2) Will GRb1 halt bone loss in ovariectomized (OVX) rats? We investigated the effects of GRb1 on viability and osteogenic differentiation of rat mesenchymal stem cells (rMSCs). Our results showed that GRb1 at concentrations of 10-8 M and 10-6 M can increase alkaline phosphatase activity, mineralization and the expression of osteogenic related proteins, such as osteopontin and osteoprotegerin, while incubating rMSCs with osteogenic induction medium and GRb1. Adding GRb1 into the medium can prevent rMSCs from Oxidative damage at the concentration of 25µM H2O2. Furthermore, 40 4-month-old rats were assigned to 5 groups(8 rats per group): the basal group, the sham group, the OVX group, the high dose of GRb1 group (6 mg/kg/day) and the low dose of GRb1 group (3 mg/kg/day). Rats recrived treatment 3days after surgery and last for 14 weeks. Examinations included serum analysis, mechanical testing, Masson-Goldner trichrome staining and bone histomorphometry analysis. The results showed that OVX can lead to dyslipidemia and excessive oxidative stress, whereas GRb1 cannot significantly halt dyslipidemia and excessive oxidative stress in OVX rats. In addition, the bone density of the lumbar vertebra and femur were decreased significantly in the OVX rats, and GRb1 could not inhibit bone loss. Bone histomorphometry analysis showed that the number and width of bone trabecula of the tibia were reduced in OVX rats, and GRb1 could not prevent their occurrence. A bone biomechanics assay showed that GRb1 cannot improve the ability of bone structure to resist fracture of the femur in OVX rats. The current study demonstrated that GRb1 has an obvious effect on osteogenic differentiation in rMSCs but no obvious effect on bone loss in OVX rats. These findings indicate GRb1 has a positive effect on rMSCs but does not have an effect on bone loss in OVX rats at the concentration we used.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Ginsenósidos/farmacología , Osteoporosis/tratamiento farmacológico , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ovariectomía , Ratas Sprague-Dawley , Organismos Libres de Patógenos Específicos , Insuficiencia del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA