Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139007

RESUMEN

Highly porous hydroxyapatite is sometimes considered toxic and useless as a biomaterial for bone tissue regeneration because of the high adsorption of calcium and phosphate ions from cell culture media. This negatively affects the osteoblast's growth in such ion-deprived media and suggests "false cytotoxicity" of tested hydroxyapatite. In our recent study, we showed that a small addition of calcium sulfate dihydrate (CSD) may compensate for this adsorption without a negative effect on other properties of hydroxyapatite-based biomaterials. This study was designed to verify whether such CSD-supplemented biomaterials may serve as antibiotic carriers. FTIR, roughness, mechanical strength analysis, drug release, hemocompatibility, cytotoxicity against human osteoblasts, and antibacterial activity were evaluated to characterize tested biomaterials. The results showed that the addition of 1.75% gypsum and gentamicin caused short-term calcium ion compensation in media incubated with the composite. The combination of both additives also increased antibacterial activity against bacteria representative of bone infections without affecting osteoblast proliferation, hemocompatibility, and mechanical parameters. Thus, gypsum and antibiotic supplementation may provide advanced functionality for bone-regeneration materials based on hydroxyapatite of a high surface area and increasingly high Ca2+ sorption capacity.


Asunto(s)
Antibacterianos , Durapatita , Humanos , Durapatita/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Sulfato de Calcio/farmacología , Calcio/metabolismo , Porosidad , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo , Osteoblastos/metabolismo
2.
Mater Sci Eng C Mater Biol Appl ; 118: 111360, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33254979

RESUMEN

The ternary HAp/curdlan/nanomagnetite hybrids with ceramic and polymer phase incorporation of magnetite nanoparticles (MNPs) were fabricated to study their heating ability under action of the alternating magnetic field (AMF), 808 nm near infrared laser radiation (NIR) and their synergic stimulation. The energy conversion was evaluated in terms of the specific absorption rate (SAR) as a function of the MNPs concentration in composites and to estimate their potential in temperature-controlled regenerative processes and hyperthermia. Measurements were carried out on dry and Ringer's solution soaked composite materials in order to mimic in situ conditions. It was found that the MNPs release during prolonged experiment is limited and has no significant effect on energy conversion emphasizing stability of the hybrids. Incorporation of the MNPs in polymer phase of the hybrid can additionally limit particle leaking as well as plays a role as insulating layer for the heat dissipation lowering the risk of sample overheating. In general, it was shown that maximum temperature of hybrid can be achieved in a relatively short time of exposure to stimulating factors whereas its control can be done through optimization of experiment conditions. MNPs incorporation into the curdlan (polymer phase) lead to strengthening of the mechanical properties of the whole network.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Durapatita , Calor , Temperatura , beta-Glucanos
3.
Mater Sci Eng C Mater Biol Appl ; 65: 70-9, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27157729

RESUMEN

An assessment of biomaterial cytotoxicity is a prerequisite for evaluation of its clinical potential. A material is considered toxic while the cell viability decreases under 70% of the control. However, extracts of certain materials are likely to reduce the cell viability due to the intense ions adsorption from culture medium (e.g. highly bioactive ceramics of high surface area). Thus, the standard ISO 10993-5 procedure is inappropriate for cytotoxicity evaluation of ceramics of high specific surface area because biomaterial extract obtained in this method (ions-depleted medium) is not optimal for cell cultures per se. Therefore, a simple test was designed as an alternative to ISO 10993-5 standard for cytotoxicity evaluation of the biomaterials of high surface area and high ions absorption capacity. The method, presented in this paper, included the evaluation of ceramics extract prepared according to corrected procedure. The corrected extract was found not cytotoxic (cell viability above 70%), suggesting that modified method for cytotoxicity evaluation of ions-adsorbing ceramics is more appropriate than ISO 10993-5 standard. For such biomaterials, the term "false" cytotoxicity is more suitable. Moreover, it was noted that NRU assay and microscopic observations should be recommended for cytotoxicity evaluation of ceramics of high surface area.


Asunto(s)
Materiales Biocompatibles/química , Cerámica/química , Durapatita/química , Adsorción , Materiales Biocompatibles/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cerámica/toxicidad , Humanos , Iones/química , Microscopía Confocal , Microscopía Electrónica de Rastreo , Nanopartículas/química , Nanopartículas/toxicidad , Tamaño de la Partícula , Propiedades de Superficie , Difracción de Rayos X
4.
Phytochemistry ; 69(3): 627-36, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17904598

RESUMEN

Two fractions of peroxidase activity, cationic Px-cat and anionic Px-ani, were isolated and partially purified (143.5- and 5.49-fold, respectively) from homogenate of spring cabbage heads. Optimum pH for both fractions is 6.0; however, Px-cat is almost equally active at neutral pH (7.0) while Px-ani reveals high activity in more acidic pHs (with 60% of maximum activity at pH 3.0). Optimal temperature for both fractions was 40 degrees C. Px-ani possessed much higher thermal stability at 40-50 degrees C (60% of remaining activity after 144h of incubation) than Px-cat. The peroxidases remained fully active during 4 weeks of storage at 4 degrees C. Kinetic studies revealed that Px-cat and Px-ani had lower apparent Km values for ABTS (0.0377 and 0.0625mM) and o-dianisidine (0.357 and 0.286mM) than for guaiacol (6.41 and 13.89mM). The best substrate for Px-cat was pyrogallol and for Px-ani-o-dianisidine. Px-cat immobilized on polyanionic PyBA-modified carbon electrode was found to produce linear repetitive signals upon consecutive additions of hydrogen peroxide during at least 1-week period and to work effectively under buffered and non-buffered conditions. These properties were comparable with those of commercially available horseradish peroxidase. Stability of the hybrid bioelectrocatalytic film and low costs of extraction and partial purification of Px-cat make it a highly promising enzyme for practical applications, including construction of bioelectrodes.


Asunto(s)
Brassica/enzimología , Peroxidasas/química , Peroxidasas/aislamiento & purificación , Sitios de Unión , Catálisis , Electroquímica , Activación Enzimática , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Cinética , Pectinas/química , Especificidad por Sustrato , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA