Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioelectromagnetics ; 39(7): 503-515, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30307039

RESUMEN

This paper tackles the problem of estimating exposure to static magnetic field (SMF) in magnetic resonance imaging (MRI) sites using a non-invasive approach. The proposed approach relies on a vision-based system to detect people's body parts and on a mathematical model to compute SMF exposure. A multi-view camera system was used to capture the MRI room, and a vision-based system was applied to detect body parts. The detected localization was then fed into a mathematical model to compute SMF exposure. In this study, we focused on exposure at the neck due to two main reasons. First, according to regulations, the limit of exposure at head and trunk for MR workers is higher than that for the general public. Second, it was easier to attach a dosimeter at the neck to perform measurements, which allowed a quantitative evaluation of our approach. This approach was applied to two scenarios simulating the daily movements of medical workers for which dosimeter measurements were also recorded. The results indicated that the proposed approach predicted occupational SMF exposure with reasonable accuracy compared with the dosimeter measurements. The proposed approach is a simple safe working procedure to estimate the exposure of MR workers at different parts of the body without wearing any marker detection. It can be applied to reduce occupational SMF exposure, without changes in workers' performances. For that reason, our non-invasive proposed method can be used as a simple safety tool to estimate occupational SMF exposure in MR sites. Bioelectromagnetics. 39:503-515, 2018.© 2018 Wiley Periodicals, Inc.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética/instrumentación , Exposición Profesional/análisis , Postura , Algoritmos , Humanos , Movimiento
2.
Bioelectromagnetics ; 39(2): 108-119, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29350408

RESUMEN

A Magnetic Resonance Imaging (MRI) scanner uses three different electromagnetic fields (EMF) to produce body images: a static permanent magnetic field (MF), several pulsed magnetic gradients, and a radiofrequency pulse. As a result, any occupation that includes an MRI exposes workers to a strong MF. The World Health Organization has now given the monitoring of occupational EMF exposure a high priority. One design for a low-cost, compact MF exposure monitor (« MR exposimeter ¼) uses a set of three orthogonally assembled Hall sensors. However, at such a strong EMF exposure intensity, the non-linearity and non-orthogonality (misalignment between the three Hall sensors) have an impact on the accuracy of EMF measurement. Therefore, a sensor characterization was performed in order to link Hall-effect output voltage to MF intensity. The sensor was then calibrated using an orthogonalization matrix and an offset vector. For each sensor configuration, the matrix and vector parameters were optimized with a calibration set generated by the movement of a three-axis sensor inside homogeneous MF areas. Once calibrated, the sensor was tested at different MF intensities and returned accuracy improvements. This calibration procedure was tested on synthetic data and performed on experimental data. The calibration parameters can be easily reused by the user, and their stability could be used as a quality control sensor. Finally, real-time monitoring test for static MF exposure was completed and validated on an MRI worker during a typical working day. Bioelectromagnetics. 39:108-119, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Campos Magnéticos/efectos adversos , Imagen por Resonancia Magnética/efectos adversos , Exposición Profesional/análisis , Calibración , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA