Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 86(2)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31676481

RESUMEN

Dietary fiber provides growth substrates for bacterial species that belong to the colonic microbiota of humans. The microbiota degrades and ferments substrates, producing characteristic short-chain fatty acid profiles. Dietary fiber contains plant cell wall-associated polysaccharides (hemicelluloses and pectins) that are chemically diverse in composition and structure. Thus, depending on plant sources, dietary fiber daily presents the microbiota with mixtures of plant polysaccharides of various types and complexity. We studied the extent and preferential order in which mixtures of plant polysaccharides (arabinoxylan, xyloglucan, ß-glucan, and pectin) were utilized by a coculture of five bacterial species (Bacteroides ovatus, Bifidobacterium longum subspecies longum, Megasphaera elsdenii, Ruminococcus gnavus, and Veillonella parvula). These species are members of the human gut microbiota and have the biochemical capacity, collectively, to degrade and ferment the polysaccharides and produce short-chain fatty acids (SCFAs). B. ovatus utilized glycans in the order ß-glucan, pectin, xyloglucan, and arabinoxylan, whereas B. longum subsp. longum utilization was in the order arabinoxylan, arabinan, pectin, and ß-glucan. Propionate, as a proportion of total SCFAs, was augmented when polysaccharide mixtures contained galactan, resulting in greater succinate production by B. ovatus and conversion of succinate to propionate by V. parvula Overall, we derived a synthetic ecological community that carries out SCFA production by the common pathways used by bacterial species for this purpose. Systems like this might be used to predict changes to the emergent properties of the gut ecosystem when diet is altered, with the aim of beneficially affecting human physiology.IMPORTANCE This study addresses the question as to how bacterial species, characteristic of the human gut microbiota, collectively utilize mixtures of plant polysaccharides such as are found in dietary fiber. Five bacterial species with the capacity to degrade polymers and/or produce acidic fermentation products detectable in human feces were used in the experiments. The bacteria showed preferential use of certain polysaccharides over others for growth, and this influenced their fermentation output qualitatively. These kinds of studies are essential in developing concepts of how the gut microbial community shares habitat resources, directly and indirectly, when presented with mixtures of polysaccharides that are found in human diets. The concepts are required in planning dietary interventions that might correct imbalances in the functioning of the human microbiota so as to support measures to reduce metabolic conditions such as obesity.


Asunto(s)
Bacterias/metabolismo , Microbioma Gastrointestinal , Técnicas de Cocultivo/métodos , Glucanos/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo , beta-Glucanos/metabolismo
2.
J Agric Food Chem ; 67(27): 7755-7764, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251611

RESUMEN

Pectic polysaccharides from New Zealand (NZ) spinach (Tetragonia tetragonioides) and karaka berries (Corynocarpus laevigatus) were extracted and analyzed. NZ spinach polysaccharides comprised mostly homogalacturonan (64.4%) and rhamnogalacturonan I (5.8%), with side chains of arabinan (8.1%), galactan (2.2%), and type II arabinogalactan (7.1%); karaka berry polysaccharides comprised homogalacturonan (21.8%) and rhamnogalacturonan I (10.0%), with greater proportions of side chains (arabinan, 15.6%; galactan, 23.8%; and type II arabinogalactan, 19.3%). Screening of gut commensal Bacteroides showed that six were able to grow on the NZ spinach extract, while five were able to grow on the karaka berry extract. Analysis of the polysaccharides remaining after fermentation, by size-exclusion chromatography and constituent sugar analysis, showed that the Bacteroides species that grew on these two substrates showed preferences for the different pectic polysaccharide types. Our data suggest that, to completely degrade and utilize the complex pectin structures found in plants, members of Bacteroides and other bowel bacteria work as metabolic consortia.


Asunto(s)
Aizoaceae/química , Bacteroides/crecimiento & desarrollo , Magnoliopsida/química , Pectinas/metabolismo , Polisacáridos/metabolismo , Bacteroides/metabolismo , Fermentación , Frutas/química , Microbioma Gastrointestinal/fisiología , Nueva Zelanda , Pectinas/análisis , Pectinas/química , Hojas de la Planta/química , Polisacáridos/química , Polisacáridos/aislamiento & purificación
3.
ISME J ; 13(6): 1437-1456, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30728469

RESUMEN

Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.


Asunto(s)
Colon/microbiología , Firmicutes/aislamiento & purificación , Firmicutes/metabolismo , Pectinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Firmicutes/clasificación , Firmicutes/genética , Microbioma Gastrointestinal , Humanos , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Proteómica
4.
J Agric Food Chem ; 66(50): 13277-13284, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30516980

RESUMEN

Polysaccharides from feijoa fruit were extracted and analyzed; the composition of these polysaccharides conforms to those typically found in the primary cell walls of eudicotyledons. The two major polysaccharide extracts consisted of mainly pectic polysaccharides and hemicellulosic polysaccharides [xyloglucan (77%) and arabinoxylan (16%)]. A collection of commensal Bacteroides species was screened for growth in culture using these polysaccharide preparations and placed into five categories based on their preference for each substrate. Most of the species tested could utilize the pectic polysaccharides, but growth on the hemicellulose was more limited. Constituent sugar and glycosyl linkage analysis showed that species that grew on the hemicellulose fraction showed differences in their preference for the two polysaccharides in this preparation. Our data demonstrate that the members of the genus Bacteroides show differential hydrolysis of pectic polysaccharides, xyloglucan, and arabinoxylan, which might influence the structure and metabolic activities of the microbiota in the human gut.


Asunto(s)
Bacteroides/crecimiento & desarrollo , Feijoa/química , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/química , Bacteroides/metabolismo , Feijoa/metabolismo , Frutas/química , Frutas/metabolismo , Humanos , Extractos Vegetales/metabolismo , Simbiosis
5.
Int J Syst Evol Microbiol ; 67(12): 4992-4998, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29039307

RESUMEN

A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7 % sequence similarity). Strain 14T shared ~99 % sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6 µm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


Asunto(s)
Clostridiales/clasificación , Heces/microbiología , Pectinas/metabolismo , Filogenia , Adulto , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/genética , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Femenino , Humanos , Nueva Zelanda , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA