Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Antonie Van Leeuwenhoek ; 116(6): 541-555, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37029880

RESUMEN

The novel bacterial strain Marseille-P4005T was isolated from the stool sample of a healthy donor. It is a Gram-stain negative, non-motile, non-spore-forming rod. It grew optimally at 37 °C and at pH 7.0 on 5% sheep blood-enriched Columbia agar after preincubation in a blood-culture bottle supplemented with rumen and blood. This strain does not ferment monosaccharides (except D-tagatose), disaccharides, or polymeric carbohydrates. The major cellular fatty acids were hexadecenoic (24.6%), octadecanoic (22.8%), and tetradecanoic (20.1%) acids. Next-generation sequencing revealed a genome size of 3.2 Mbp with a 56.4 mol% G + C. Phylogenetic analysis based on the 16S rRNA gene highlighted Agathobaculum desmolans strain ATCC 43058T as the closest related strain. The OrthoANI, AAI, and digital DNA-DNA hybridization values were below the critical thresholds of 95%, 95-96%, and 70%, respectively, to define a novel bacterial species. Antibiotic resistance genes APH(3')-IIIa, erm(B), and tet(W) were detected with high identity percentages of 100%, 98.78%, and 97.18% for each gene, respectively. The APH(3')-IIIa gene confers resistance to amikacin, erm(B) gene confers resistance to erythromycin, lincomycin, and clindamycin, while tet(W) gene confers resistance to doxycycline and tetracycline. Based on KEGG BlastKOALA analyses, the annotation results showed that our strain could use glucose to produce L-lactate and pyruvate but not acetate or ethanol. Also, strain Marseille-P4005T was predicted to use phenylalanine to produce indole, a major intercellular signal molecule within the gut microbial ecosystem. Through having a gene coding for tryptophan synthase beta chain (trpB), strain Marseille-P4005T could produce L-tryptophan (an essential amino acid) from indole. Strain Marseille-P4005T showed its highest prevalence in the human gut (34.19%), followed by the reproductive system (17.98%), according to a query carried out on the Integrated Microbial NGS (IMNGS) platform. Based on phylogenetic, phenotypic, and genomic analyses, we classify strain Marseille-P4005T (= CSUR P4005 = CECT 9669), a novel species within the genus Agathobaculum, for which the name of Agathobaculum massiliense sp. nov. is proposed.


Asunto(s)
Lactobacillales , Triptófano , Humanos , Triptófano/genética , Filogenia , ARN Ribosómico 16S/genética , Ecosistema , Kanamicina Quinasa/genética , Composición de Base , Genómica , Bacterias/genética , Lactobacillales/genética , Ácidos Grasos/química , Indoles , ADN , ADN Bacteriano/genética , ADN Bacteriano/química , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
2.
Microsc Res Tech ; 86(10): 1249-1257, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36773029

RESUMEN

Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) are powerful tools to study the ultrastructure of numerous specimens and to determine their elemental composition, respectively. However, results have not yet been reported on their application to urine samples in routine clinical laboratory practice. Herein we investigate urine sediment by using SEM and EDX to detect and identify different urine components. A total of 206 urine samples from patients with and without urinary tract infections were analyzed using SEM and EDX. Microorganisms, crystals, epithelial cells, leukocytes, and erythrocytes were targeted in urine sediment samples. The identification of urine components was based on their morphology, size, contrast, and elemental composition. SEM-analysis allowed us to identify and classify microorganisms in urine sediments into the categories of gram-negative bacilli, cluster cocci, chain cocci, gram-negative bacilli, gram-positive bacilli, and yeasts. In addition, various types of epithelial cells such as renal, transitional, and squamous epithelial cells were found. Furthermore, leukocytes and erythrocytes were well identified, with the detection of various morphological forms of erythrocytes, such as dysmorphic and isomorphic erythrocytes. Using SEM-EDX analysis, calcium oxalate was the most frequently-identified crystal (92.0%), with prominent peaks of C, O, and Ca elements, followed by struvite (6%), with peaks of Mg, P, O, and N. These preliminary data suggest that the two complementary SEM-EDX analyses can be used to detect and identify microorganisms and crystals in urine samples. Further studies are still needed to apply SEM-EDX to urine sediment analysis. SEM-EDX analyses provided comparative results with the routine results, with accurate identification, high resolution and deep focus compared to the routine urinalysis SEM-analysis allowed us to identify and classify microorganisms in urine sediments into the categories of gram-negative bacilli, cluster cocci, chain cocci, gram-negative bacilli, gram-positive bacilli and yeasts. SEM-EDX analysis enabled the accurate identification of crystals based on both morphology and elemental composition.


Asunto(s)
Oxalato de Calcio , Eritrocitos , Humanos , Microscopía Electrónica de Rastreo , Rayos X , Estruvita , Oxalato de Calcio/análisis , Eritrocitos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA