Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Lett ; 197(3): 175-82, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20576494

RESUMEN

The selection and application of appropriate safety screening paradigms could revolutionize the drug discovery process by reducing safety-related attrition. While mechanism specific genotoxicity and safety pharmacology assays are routinely used in screening, the overall value of employing nonspecific cytotoxicity assays remains controversial. A retrospective analysis of safety findings from rat exploratory toxicity studies (4-14 days) utilizing compounds that spanned broad therapeutic targets (protease, transport, G-protein-coupled receptors, and kinase inhibitors, cGMP modulators) demonstrated that safety toleration in vivo could be approximated using cytotoxicity values. A composite safety score was calculated for each compound dose based on findings in each of the following categories: systemic toleration (mortality, food consumption, and adverse clinical signs), clinical chemistry/hematology parameters (deviations from normal ranges), and multiorgan pathology (necrosis or incidence/severity of histologic change). Binning compounds into potent (LC(50)<10 microM) and non-potent (LC(50)>100 microM) cytotoxicants in vitro showed that compared to non-potent cytotoxicants the exposure to potent cytotoxicants in vivo resulted in higher overall severity scores at lower exposures. Correlating overall toleration for individual compounds was further refined when in vivo exposure was considered. When average plasma exposure (Cp(ave)) for a compound exceeded its mean lethal concentration (LC(50)) in vitro (Cp(ave)/LC(50)>1), higher overall severity scores were achieved compared to lower exposure margins (Cp(ave)/LC(50) <0.01). Based on this analysis, the ability to select lead series and individual compounds with better safety characteristics is presented. In summary, cytotoxicity screening can be used to approximate, not define, the safety characteristics of lead pharmaceutical series early in the drug discovery process.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Pruebas de Toxicidad/métodos , Animales , Evaluación Preclínica de Medicamentos , Masculino , Valor Predictivo de las Pruebas , Ratas
2.
Chem Res Toxicol ; 23(6): 1115-26, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20507089

RESUMEN

The synthesis and structure-activity relationship studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones as antagonists of the human calcium receptor (CaSR) have been recently disclosed [ Didiuk et al. ( 2009 ) Bioorg. Med. Chem. Lett. 19 , 4555 - 4559 ). On the basis of its pharmacology and disposition attributes, (R)-2-(2-hydroxyphenyl)-3-(1-phenylpropan-2-yl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one (1) was considered for rapid advancement to first-in-human (FIH) trials to mitigate uncertainty surrounding the pharmacokinetic/pharmacodynamic (PK/PD) predictions for a short-acting bone anabolic agent. During the course of metabolic profiling, however, glutathione (GSH) conjugates of 1 were detected in human liver microsomes in an NADPH-dependent fashion. Characterization of the GSH conjugate structures allowed insight(s) into the bioactivation pathway, which involved CYP3A4-mediated phenol ring oxidation to the catechol, followed by further oxidation to the electrophilic ortho-quinone species. While the reactive metabolite (RM) liability raised concerns around the likelihood of a potential toxicological outcome, a more immediate program goal was establishing confidence in human PK predictions in the FIH study. Furthermore, the availability of a clinical biomarker (serum parathyroid hormone) meant that PD could be assessed side by side with PK, an ideal scenario for a relatively unprecedented pharmacologic target. Consequently, progressing 1 into the clinic was given a high priority, provided the compound demonstrated an adequate safety profile to support FIH studies. Despite forming identical RMs in rat liver microsomes, no clinical or histopathological signs prototypical of target organ toxicity were observed with 1 in in vivo safety assessments in rats. Compound 1 was also devoid of metabolism-based mutagenicity in in vitro (e.g., Salmonella Ames) and in vivo assessments (micronuclei induction in bone marrow) in rats. Likewise, metabolism-based studies (e.g., evaluation of detoxicating routes of clearance and exhaustive PK/PD studies in animals to prospectively predict the likelihood of a low human efficacious dose) were also conducted, which mitigated the risks of idiosyncratic toxicity to a large degree. In parallel, medicinal chemistry efforts were initiated to identify additional compounds with a complementary range of human PK predictions, which would maximize the likelihood of achieving the desired PD effect in the clinic. The back-up strategy also incorporated an overarching goal of reducing/eliminating reactive metabolite formation observed with 1. Herein, the collective findings from our discovery efforts in the CaSR program, which include the incorporation of appropriate derisking steps when dealing with RM issues are summarized.


Asunto(s)
Anabolizantes/química , Anabolizantes/metabolismo , Osteoporosis/tratamiento farmacológico , Piridinas/química , Piridinas/metabolismo , Pirimidinonas/química , Pirimidinonas/metabolismo , Receptores Sensibles al Calcio/antagonistas & inhibidores , Anabolizantes/efectos adversos , Animales , Cristalografía por Rayos X , Humanos , Piridinas/efectos adversos , Pirimidinonas/efectos adversos , Ratas
3.
Bioorg Med Chem Lett ; 19(9): 2400-3, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19346127

RESUMEN

The development of a series of novel 1,2,3,4-tetrahydroisoquinolin-1-ones as antagonists of G protein-coupled receptor 40 (GPR40) is described. The synthesis, in vitro inhibitory values for GPR40, in vitro microsomal clearance and rat in vivo clearance data are discussed. Initial hits displayed high rat in vivo clearances that were higher than liver blood flow. Optimization of rat in vivo clearance was achieved and led to the identification of 15i, whose rat oral pharmacokinetic data is reported.


Asunto(s)
Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Tetrahidroisoquinolinas/síntesis química , Tetrahidroisoquinolinas/farmacocinética , Administración Oral , Animales , Química Farmacéutica/métodos , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora , Ligandos , Tasa de Depuración Metabólica , Modelos Químicos , Ratas , Relación Estructura-Actividad , Tetrahidroisoquinolinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA