RESUMEN
OBJECTIVE: Immune-mediated necrotizing myopathies (IMNMs) are severe forms of myositis often associated with pathogenic anti-3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) autoantibodies (aAbs). Efgartigimod is an engineered human IgG1 Fc fragment that antagonizes the neonatal Fc receptor (FcRn), thereby preventing recycling and promoting lysosomal degradation of IgG, including aAbs. We evaluated the therapeutic effects of IgG reduction by efgartigimod in a humanized murine model of IMNM. METHODS: Disease was induced in C5-deficient (C5def) or Rag2-deficient (Rag2-/-) mice receiving co-injections of anti-HMGCR+ IgG from an IMNM patient and human complement. C5def mice were treated in a preventive setting with s.c. injections of efgartigimod and Rag2-/- mice in a curative setting after disease was induced by anti-HMGCR+ IgG injections. Anti-HMGCR aAbs levels were monitored in mouse serum and muscle tissue. Histological analysis was performed on muscle sections. Muscle force was assessed by grip test or measurement of gastrocnemius strength upon electrostimulation. RESULTS: Administration of efgartigimod rapidly reduced total IgG levels, including the level of pathogenic anti-HMGCR aAbs, in both serum (P < 0.0001) and muscle (P < 0.001). In the preventive setting, efgartigimod prevented myofibre necrosis (P < 0.05), thus precluding loss of muscle strength (P < 0.05). In the therapeutic setting, efgartigimod prevented further necrosis and allowed muscle fibre regeneration (P < 0.05). Hence, muscle strength returned to normal (P < 0.01). CONCLUSION: Efgartigimod reduces circulating IgG levels, including pathogenic anti-HMGCR+ IgG aAbs, in a humanized mouse model of IMNM, preventing further necrosis and allowing muscle fibre regeneration. These results support investigating the therapeutic efficacy of efgartigimod through a clinical trial in IMNM patients.
Asunto(s)
Enfermedades Autoinmunes , Enfermedades Musculares , Miositis , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Músculo Esquelético/patología , Autoanticuerpos , Hidroximetilglutaril-CoA Reductasas , Inmunoglobulina G , NecrosisRESUMEN
The identification of AQP4-IgG, a specific and pathogenic antibody of NMO/SD has led to a broadening of the clinical spectrum of manifestations of NMO/SD including the presence of encephalic symptoms. Lesions are often distributed on periependymal area and sometimes affected the diencephalon leading to sleep disorders. We report a case of hypersomnia with polysomnographic documentation during the first attack of NMO/SD. Brain MRI revealed bilateral hypothalamic lesions around the third ventricle, whereas optic nerves and spinal cord were intact. The record of the nocturnal video-polysomnography followed by multiple sleep latency tests (MSLT) revealed an abnormal shortened sleep period with a single sleep onset in REM allowing secondary central hypersomnia diagnosis. The recovery of hypersomnia was complete within few months without psychostimulant treatment and the diencephalic lesion disappeared. Thus, diencephalic form of NMO/SD seems to cause narcolepsy or non-narcoleptic central hypersomnia and have a good recovery.
Asunto(s)
Trastornos de Somnolencia Excesiva/etiología , Neuromielitis Óptica/complicaciones , Adolescente , Acuaporina 4/inmunología , Trastornos de Somnolencia Excesiva/patología , Trastornos de Somnolencia Excesiva/fisiopatología , Femenino , Humanos , Hipotálamo/patología , Imagen por Resonancia Magnética , Neuromielitis Óptica/inmunología , Polisomnografía , Tercer Ventrículo/patologíaRESUMEN
OBJECTIVES: In autoimmunity, autoantibodies (aAb) may be simple biomarkers of disease or true pathogenic effectors. A form of idiopathic inflammatory myopathy associated with anti-signal recognition particle (SRP) or anti-3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) aAb has been individualised and is referred to as immune-mediated necrotising myopathy (IMNM). The level of aAb correlates with IMNM activity and disease may respond to immunosuppression, suggesting that they are pathogenic. We aimed to evaluate the pathogenicity of IgG from patients with anti-SRP or anti-HMGCR aAb in vivo by developing the first mouse model of IMNM. METHODS: IgG from patients suffering from anti-SRP or anti-HMGCR associated IMNM were passively transferred to wild-type, Rag2-/- or complement C3-/- mice. Muscle deficiency was evaluated by muscle strength on electrostimulation and grip test. Histological analyses were performed after haematoxylin/eosin staining or by immunofluorescence or immunohistochemistry analysis. Antibody levels were quantified by addressable laser bead assay (ALBIA). RESULTS: Passive transfer of IgG from patients suffering from IMNM to C57BL/6 or Rag2-/- mice provoked muscle deficiency. Pathogenicity of aAb was reduced in C3-/- mice while increased by supplementation with human complement. Breakage of tolerance by active immunisation with SRP or HMGCR provoked disease. CONCLUSION: This study demonstrates that patient-derived anti-SRP+ and anti-HMGCR+ IgG are pathogenic towards muscle in vivo through a complement-mediated mechanism, definitively establishing the autoimmune character of IMNM. These data support the use of plasma exchanges and argue for evaluating complement-targeting therapies in IMNM.
Asunto(s)
Autoanticuerpos/inmunología , Hidroximetilglutaril-CoA Reductasas/inmunología , Inmunoglobulina G/inmunología , Miositis/inmunología , Partícula de Reconocimiento de Señal/inmunología , Animales , Proteínas del Sistema Complemento/inmunología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Fuerza Muscular/inmunología , Músculo Esquelético/inmunología , Necrosis/inmunologíaRESUMEN
Dermatomyositis (DM) is an autoimmune disease associated with enhanced type I interferon (IFN) signalling in skeletal muscle, but the mechanisms underlying muscle dysfunction and inflammation perpetuation remain unknown. Transcriptomic analysis of early untreated DM muscles revealed that the main cluster of down-regulated genes was mitochondria-related. Histochemical, electron microscopy, and in situ oxygraphy analysis showed mitochondrial abnormalities, including increased reactive oxygen species (ROS) production and decreased respiration, which was correlated with low exercise capacities and a type I IFN signature. Moreover, IFN-ß induced ROS production in human myotubes was found to contribute to mitochondrial malfunctions. Importantly, the ROS scavenger N-acetyl cysteine (NAC) prevented mitochondrial dysfunctions, type I IFN-stimulated transcript levels, inflammatory cell infiltrate, and muscle weakness in an experimental autoimmune myositis mouse model. Thus, these data highlight a central role of mitochondria and ROS in DM. Mitochondrial dysfunctions, mediated by IFN-ß induced-ROS, contribute to poor exercise capacity. In addition, mitochondrial dysfunctions increase ROS production that drive type I IFN-inducible gene expression and muscle inflammation, and may thus self-sustain the disease. Given that current DM treatments only induce partial recovery and expose to serious adverse events (including muscular toxicity), protecting mitochondria from dysfunctions may open new therapeutic avenues for DM.