Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 17(2): e0263420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35196352

RESUMEN

Marine microbial communities play an important role in biodegradation of subsurface plumes of oil that form after oil is accidentally released from a seafloor wellhead. The response of these mesopelagic microbial communities to the application of chemical dispersants following oil spills remains a debated topic. While there is evidence that contrasting results in some previous work may be due to differences in dosage between studies, the impacts of these differences on mesopelagic microbial community composition remains unconstrained. To answer this open question, we exposed a mesopelagic microbial community from the Gulf of Mexico to oil alone, three concentrations of oil dispersed with Corexit 9500, and three concentrations of Corexit 9500 alone over long periods of time. We analyzed changes in hydrocarbon chemistry, cell abundance, and microbial community composition at zero, three and six weeks. The lowest concentration of dispersed oil yielded hydrocarbon concentrations lower than oil alone and microbial community composition more similar to control seawater than any other treatments with oil or dispersant. Higher concentrations of dispersed oil resulted in higher concentrations of microbe-oil microaggregates and similar microbial composition to the oil alone treatment. The genus Colwellia was more abundant when exposed to multiple concentrations of dispersed oil, but not when exposed to dispersant alone. Conversely, the most abundant Marinobacter amplicon sequence variant (ASV) was not influenced by dispersant when oil was present and showed an inverse relationship to the summed abundance of Alcanivorax ASVs. As a whole, the data presented here show that the concentration of oil strongly impacts microbial community response, more so than the presence of dispersant, confirming the importance of the concentrations of both oil and dispersant in considering the design and interpretation of results for oil spill simulation experiments.


Asunto(s)
Lípidos/farmacología , Microbiota/efectos de los fármacos , Microbiota/genética , Contaminación por Petróleo/efectos adversos , Agua de Mar/química , Agua de Mar/microbiología , Alcanivoraceae/genética , Alteromonadaceae/genética , Biodegradación Ambiental/efectos de los fármacos , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Golfo de México , Hidrocarburos/metabolismo , Marinobacter/genética , Petróleo/metabolismo , ARN Ribosómico 16S/genética , Contaminantes Químicos del Agua/análisis
2.
Environ Sci Pollut Res Int ; 27(36): 45270-45281, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32789631

RESUMEN

Deep-water column micronekton play a key role in oceanic food webs and represent an important trophic link between deep- and shallow-water ecosystems. Thus, the potential impacts of sub-surface hydrocarbon plumes on these organisms are critical to developing a more complete understanding of ocean-wide effects resulting from deep-sea oil spills. This work was designed to advance the understanding of hydrocarbon toxicity in several ecologically important deep-sea micronekton species using controlled laboratory exposures aimed at determining lethal threshold exposure levels. The current study confirmed the results previously determined for five deep-sea micronekton by measuring lethal threshold levels for phenanthrene between 81.2 and 277.5 µg/L. These results were used to calibrate the target lipid model and to calculate a critical target lipid body burden for each species. In addition, an oil solubility model was used to predict the acute toxicity of MC252 crude oil to vertically migrating crustaceans, Janicella spinacauda and Euphausiidae spp., and to compare the predictions with results of a 48-h constant exposure toxicity test with passive-dosing. Results confirmed that the tested deep-sea micronekton appear more sensitive than many other organisms when exposed to dissolved oil, but baseline stress complicated interpretation of results.


Asunto(s)
Contaminación por Petróleo , Petróleo , Fenantrenos , Contaminantes Químicos del Agua , Animales , Ecosistema , Océanos y Mares , Petróleo/análisis , Petróleo/toxicidad , Contaminación por Petróleo/análisis , Fenantrenos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Mar Pollut Bull ; 151: 110804, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32056599

RESUMEN

Here, we report results from a 15-day mesocosm experiment examining changes in estimated oil equivalents (EOEs), n-alkanes (n-C10 to n-C35), polycyclic aromatic hydrocarbons (PAHs) and petroleum biomarkers. Water accommodated fractions (WAF) of oil and diluted chemically enhanced WAF (DCEWAF) were prepared and concentrations of oil residues determined on day 0, 3 and 15, respectively. Significant removals of n-alkane and PAHs were observed starting from day 3. The n-C17/pristane and n-C18/phytane ratios suggested that the n-alkane removal was due to biodegradation in the mesocosms. The ratios of C2-dibenzothiophenes/C2-phenanthrenes (D2/P2) and C3-dibenzothiophenes/C3-phenanthrenes (D3/P3) were found to be stable through the experiment. DCEWAF treatment had longer half-lives for most n-alkanes but shorter half-lives for most PAHs than the WAF treatment. Most petroleum biomarkers were stable throughout the experiment. However, depletion of TAS (tricyclic aromatic steroids) was observed on day 15 of DCEWAF treatment.


Asunto(s)
Ecosistema , Contaminación por Petróleo , Petróleo , Tensoactivos , Contaminantes Químicos del Agua , Hidrocarburos , Hidrocarburos Policíclicos Aromáticos
4.
Mar Pollut Bull ; 150: 110713, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31757392

RESUMEN

The water-soluble compounds of oil (e.g. low molecular weight PAHs) dissolve as a function of their physicochemical properties and environmental conditions, while the non-soluble compounds exist as dispersed droplets. Both the chemical and physical form of oil will affect the biological response. We present data from a mesocosm study comparing the microbial response to the water-soluble fraction (WSF), versus a water-accommodated fraction of oil (WAF), which contains both dispersed and dissolved oil components. WAF and WSF contained similar concentrations of low molecular weight PAHs, but concentrations of 4- and 5-ring PAHs were higher in WAF compared to WSF. Microbial communities were significantly different between WSF and WAF treatments, primary productivity was reduced more in WSF than in WAF, and concentrations of transparent exopolymeric particles were highest in WSF and lowest in the controls. These differences highlight the importance of dosing strategy for mesocosm and toxicity tests.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Pruebas de Toxicidad , Agua
5.
Environ Toxicol Chem ; 37(11): 2810-2819, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30178489

RESUMEN

The Chemical Response to Oil Spill: Ecological Effects Research Forum's water accommodated fraction procedure was compared with 2 alternative techniques in which crude oil was passively dosed from silicone tubing or O-rings. Fresh Macondo oil (MC252) was dosed at 30 mg/L using each approach to investigate oil dissolution kinetics, which was monitored by fluorometry as estimated oil equivalents (EOEs). Subsequent experiments with each dosing method were then conducted at multiple oil loadings. Following equilibration, test media were analytically characterized for polyaromatic hydrocarbons (PAHs) using gas chromatography (GC)-mass spectrometry and dissolved oil using biomimetic solid-phase microextraction (SPME). The results showed that equilibrium was achieved within 72 h for all methods. Measured PAH concentrations were compared with oil solubility model predictions of dissolved exposures. The concentration and composition of measured and predicted dissolved PAHs varied with oil loading and were consistent between dosing methods. Two-dimensional GC compositional data for this oil were then used to calculate dissolved toxic units for predicting MC252 oil acute toxicity across the expected range of species sensitivities. Predicted toxic units were nonlinear with loading and correlated to both EOE and biomimetic SPME. Passive dosing methods provide a practical strategy to deliver and maintain dissolved oil concentrations while avoiding the complicating role that droplets can introduce in exposure characterization and test interpretation. Environ Toxicol Chem 2018;37:2810-2819. © 2018 SETAC.


Asunto(s)
Fraccionamiento Químico/métodos , Exposición a Riesgos Ambientales/análisis , Contaminación por Petróleo/análisis , Petróleo/toxicidad , Agua/química , Cromatografía de Gases y Espectrometría de Masas , Cinética , Hidrocarburos Policíclicos Aromáticos/análisis , Microextracción en Fase Sólida , Solubilidad , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA