Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cells ; 12(5)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36899910

RESUMEN

Zinc supplementation has been shown to be beneficial to slow the progression of age-related macular degeneration (AMD). However, the molecular mechanism underpinning this benefit is not well understood. This study used single-cell RNA sequencing to identify transcriptomic changes induced by zinc supplementation. Human primary retinal pigment epithelial (RPE) cells could mature for up to 19 weeks. After 1 or 18 weeks in culture, we supplemented the culture medium with 125 µM added zinc for one week. RPE cells developed high transepithelial electrical resistance, extensive, but variable pigmentation, and deposited sub-RPE material similar to the hallmark lesions of AMD. Unsupervised cluster analysis of the combined transcriptome of the cells isolated after 2, 9, and 19 weeks in culture showed considerable heterogeneity. Clustering based on 234 pre-selected RPE-specific genes divided the cells into two distinct clusters, we defined as more and less differentiated cells. The proportion of more differentiated cells increased with time in culture, but appreciable numbers of cells remained less differentiated even at 19 weeks. Pseudotemporal ordering identified 537 genes that could be implicated in the dynamics of RPE cell differentiation (FDR < 0.05). Zinc treatment resulted in the differential expression of 281 of these genes (FDR < 0.05). These genes were associated with several biological pathways with modulation of ID1/ID3 transcriptional regulation. Overall, zinc had a multitude of effects on the RPE transcriptome, including several genes involved in pigmentation, complement regulation, mineralization, and cholesterol metabolism processes associated with AMD.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Zinc/metabolismo , Degeneración Macular/metabolismo , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
2.
Mol Genet Metab ; 134(1-2): 96-116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34340878

RESUMEN

Gyrate atrophy of the choroid and retina (GACR) is a rare inborn error of amino acid metabolism caused by bi-allelic variations in OAT. GACR is characterised by vision decline in early life eventually leading to complete blindness, and high plasma ornithine levels. There is no curative treatment for GACR, although several therapeutic modalities aim to slow progression of the disease by targeting different steps within the ornithine pathway. No international treatment protocol is available. We systematically collected all international literature on therapeutic interventions in GACR to provide an overview of published treatment effects. METHODS: Following the PRISMA guidelines, we conducted a systematic review of the English literature until December 22nd 2020. PubMed and Embase databases were searched for studies related to therapeutic interventions in patients with GACR. RESULTS: A total of 33 studies (n = 107 patients) met the inclusion criteria. Most studies were designed as case reports (n = 27) or case series (n = 4). No randomised controlled trials or large cohort studies were found. Treatments applied were protein-restricted diets, pyridoxine supplementation, creatine or creatine precursor supplementation, l-lysine supplementation, and proline supplementation. Protein-restricted diets lowered ornithine levels ranging from 16.0-91.2%. Pyridoxine responsiveness was reported in 30% of included mutations. Lysine supplementation decreased ornithine levels with 21-34%. Quality assessment showed low to moderate quality of the articles. CONCLUSIONS: Based primarily on case reports ornithine levels can be reduced by using a protein restricted diet, pyridoxine supplementation (variation-dependent) and/or lysine supplementation. The lack of pre-defined clinical outcome measures and structural follow-up in all included studies impeded conclusions on clinical effectiveness. Future research should be aimed at 1) Unravelling the OAT biochemical pathway to identify other possible pathologic metabolites besides ornithine, 2) Pre-defining GACR specific clinical outcome measures, and 3) Establishing an international historical cohort.


Asunto(s)
Coroides/efectos de los fármacos , Atrofia Girata/tratamiento farmacológico , Errores Innatos del Metabolismo/tratamiento farmacológico , Retina/efectos de los fármacos , Coroides/patología , Humanos , Mutación , Retina/patología
3.
Prog Retin Eye Res ; 70: 55-84, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30572124

RESUMEN

Retinal drusen formation is not only a clinical hallmark for the development of age-related macular degeneration (AMD) but also for other disorders, such as Alzheimer's disease and renal diseases. The initiation and growth of drusen is poorly understood. Attention has focused on lipids and minerals, but relatively little is known about the origin of drusen-associated proteins and how they are retained in the space between the basal lamina of the retinal pigment epithelium and the inner collagenous layer space (sub-RPE-BL space). While some authors suggested that drusen proteins are mainly derived from cellular debris from processed photoreceptor outer segments and the RPE, others suggest a choroidal cell or blood origin. Here, we reviewed and supplemented the existing literature on the molecular composition of the retina/choroid complex, to gain a more complete understanding of the sources of proteins in drusen. These "drusenomics" studies showed that a considerable proportion of currently identified drusen proteins is uniquely originating from the blood. A smaller, but still large fraction of drusen proteins comes from both blood and/or RPE. Only a small proportion of drusen proteins is uniquely derived from the photoreceptors or choroid. We next evaluated how drusen components may "meet, greet and stick" to each other and/or to structures like hydroxyapatite spherules to form macroscopic deposits in the sub-RPE-BL space. Finally, we discuss implications of our findings with respect to the previously proposed homology between drusenogenesis in AMD and plaque formation in atherosclerosis.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteoma/metabolismo , Proteómica , Drusas Retinianas/metabolismo , Lámina Basal de la Coroides/metabolismo , Humanos , Epitelio Pigmentado de la Retina/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 34(9): 1985-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24969777

RESUMEN

OBJECTIVE: Mutations in ABCC6 underlie the ectopic mineralization disorder pseudoxanthoma elasticum (PXE) and some forms of generalized arterial calcification of infancy, both of which affect the cardiovascular system. Using cultured cells, we recently showed that ATP-binding cassette subfamily C member 6 (ABCC6) mediates the cellular release of ATP, which is extracellularly rapidly converted into AMP and the mineralization inhibitor inorganic pyrophosphate (PPi). The current study was performed to determine which tissues release ATP in an ABCC6-dependent manner in vivo, where released ATP is converted into AMP and PPi, and whether human PXE ptients have low plasma PPi concentrations. APPROACH AND RESULTS: Using cultured primary hepatocytes and in vivo liver perfusion experiments, we found that ABCC6 mediates the direct, sinusoidal, release of ATP from the liver. Outside hepatocytes, but still within the liver vasculature, released ATP is converted into AMP and PPi. The absence of functional ABCC6 in patients with PXE leads to strongly reduced plasma PPi concentrations. CONCLUSIONS: Hepatic ABCC6-mediated ATP release is the main source of circulating PPi, revealing an unanticipated role of the liver in systemic PPi homeostasis. Patients with PXE have a strongly reduced plasma PPi level, explaining their mineralization disorder. Our results indicate that systemic PPi is relatively stable and that PXE, generalized arterial calcification of infancy, and other ectopic mineralization disorders could be treated with PPi supplementation therapy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Adenosina Trifosfato/metabolismo , Difosfatos/sangre , Hígado/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/fisiología , Adenosina Monofosfato/sangre , Anciano , Animales , Células Cultivadas , Medios de Cultivo Condicionados , Femenino , Células HEK293 , Células HeLa , Hepatocitos/metabolismo , Homeostasis , Humanos , Hígado/irrigación sanguínea , Masculino , Ratones , Persona de Mediana Edad , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/metabolismo , Ratas
5.
Proc Natl Acad Sci U S A ; 110(50): 20206-11, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277820

RESUMEN

Pseudoxanthoma elasticum (PXE) is an autosomal recessive disease characterized by progressive ectopic mineralization of the skin, eyes, and arteries, for which no effective treatment exists. PXE is caused by inactivating mutations in the gene encoding ATP-binding cassette sub-family C member 6 (ABCC6), an ATP-dependent efflux transporter present mainly in the liver. Abcc6(-/-) mice have been instrumental in demonstrating that PXE is a metabolic disease caused by the absence of an unknown factor in the circulation, the presence of which depends on ABCC6 in the liver. Why absence of this factor results in PXE has remained a mystery. Here we report that medium from HEK293 cells overexpressing either human or rat ABCC6 potently inhibits mineralization in vitro, whereas medium from HEK293 control cells does not. Untargeted metabolomics revealed that cells expressing ABCC6 excrete large amounts of nucleoside triphosphates, even though ABCC6 itself does not transport nucleoside triphosphates. Extracellularly, ectonucleotidases hydrolyze the excreted nucleoside triphosphates to nucleoside monophosphates and inorganic pyrophosphate (PPi), a strong inhibitor of mineralization that plays a pivotal role in several mineralization disorders similar to PXE. The in vivo relevance of our data are demonstrated in Abcc6(-/-) mice, which had plasma PPi levels <40% of those found in WT mice. This study provides insight into how ABCC6 affects PXE. Our data indicate that the factor that normally prevents PXE is PPi, which is provided to the circulation in the form of nucleoside triphosphates via an as-yet unidentified but ABCC6-dependent mechanism.


Asunto(s)
Difosfatos/sangre , Enfermedades Metabólicas/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Seudoxantoma Elástico/genética , Animales , Cartilla de ADN/genética , ADN Complementario/genética , Fosfatos de Dinucleósidos/metabolismo , Células HEK293 , Humanos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Metabolómica , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Mutación/genética , Seudoxantoma Elástico/metabolismo , Seudoxantoma Elástico/patología , Ratas
6.
J Mol Med (Berl) ; 89(11): 1125-35, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21725681

RESUMEN

Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder in which calcification of connective tissue leads to pathology in skin, eye and blood vessels. PXE is caused by mutations in ABCC6. High expression of this transporter in the basolateral hepatocyte membrane suggests that it secretes an as-yet elusive factor into the circulation which prevents ectopic calcification. Utilizing our Abcc6 (-/-) mouse model for PXE, we tested the hypothesis that this factor is vitamin K (precursor) (Borst et al. 2008, Cell Cycle). For 3 months, Abcc6 (-/-) and wild-type mice were put on diets containing either the minimum dose of vitamin K required for normal blood coagulation or a dose that was 100 times higher. Vitamin K was supplied as menaquinone-7 (MK-7). Ectopic calcification was monitored in vivo by monthly micro-CT scans of the snout, as the PXE mouse model develops a characteristic connective tissue mineralization at the base of the whiskers. In addition, calcification of kidney arteries was measured by histology. Results show that supplemental MK-7 had no effect on ectopic calcification in Abcc6 ( -/- ) mice. MK-7 supplementation increased vitamin K levels (in skin, heart and brain) in wild-type and in Abcc6 (-/-) mice. Vitamin K tissue levels did not depend on Abcc6 genotype. In conclusion, dietary MK-7 supplementation increased vitamin K tissue levels in the PXE mouse model but failed to counteract ectopic calcification. Hence, we obtained no support for the hypothesis that Abcc6 transports vitamin K and that PXE can be cured by increasing tissue levels of vitamin K.


Asunto(s)
Calcinosis/metabolismo , Seudoxantoma Elástico/metabolismo , Vitamina K 2/análogos & derivados , Vitaminas/farmacología , Vitaminas/farmacocinética , Animales , Calcinosis/tratamiento farmacológico , Calcinosis/genética , Calcinosis/patología , Modelos Animales de Enfermedad , Hemostáticos/farmacocinética , Hemostáticos/farmacología , Humanos , Ratones , Ratones Noqueados , Seudoxantoma Elástico/tratamiento farmacológico , Seudoxantoma Elástico/genética , Seudoxantoma Elástico/patología , Vitamina K 2/farmacocinética , Vitamina K 2/farmacología
7.
PLoS One ; 5(5): e9341, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20479888

RESUMEN

BACKGROUND: To identify and functionally annotate cell type-specific gene expression in the human retinal pigment epithelium (RPE), a key tissue involved in age-related macular degeneration and retinitis pigmentosa. METHODOLOGY: RPE, photoreceptor and choroidal cells were isolated from selected freshly frozen healthy human donor eyes using laser microdissection. RNA isolation, amplification and hybridization to 44 k microarrays was carried out according to Agilent specifications. Bioinformatics was carried out using Rosetta Resolver, David and Ingenuity software. PRINCIPAL FINDINGS: Our previous 22 k analysis of the RPE transcriptome showed that the RPE has high levels of protein synthesis, strong energy demands, is exposed to high levels of oxidative stress and a variable degree of inflammation. We currently use a complementary new strategy aimed at the identification and functional annotation of RPE-specific expressed transcripts. This strategy takes advantage of the multilayered cellular structure of the retina and overcomes a number of limitations of previous studies. In triplicate, we compared the transcriptomes of RPE, photoreceptor and choroidal cells and we deduced RPE specific expression. We identified at least 114 entries with RPE-specific gene expression. Thirty-nine of these 114 genes also show high expression in the RPE, comparison with the literature showed that 85% of these 39 were previously identified to be expressed in the RPE. In the group of 114 RPE specific genes there was an overrepresentation of genes involved in (membrane) transport, vision and ophthalmic disease. More fundamentally, we found RPE-specific involvement in the RAR-activation, retinol metabolism and GABA receptor signaling pathways. CONCLUSIONS: In this study we provide a further specification and understanding of the RPE transcriptome by identifying and analyzing genes that are specifically expressed in the RPE.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Epitelio Pigmentado de la Retina/metabolismo , Anciano , Coroides/citología , Coroides/metabolismo , Humanos , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Células Fotorreceptoras/metabolismo , Epitelio Pigmentado de la Retina/citología , Transducción de Señal
8.
J Mol Med (Berl) ; 88(5): 467-75, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20177653

RESUMEN

Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic calcification of connective tissue in skin, Bruch's membrane of the eye, and walls of blood vessels. PXE is caused by mutations in the ABCC6 gene, but the exact etiology is still unknown. While observations on patients suggest that high calcium intake worsens the clinical symptoms, the patient organization PXE International has published the dietary advice to increase calcium intake in combination with increased magnesium intake. To obtain more data on this controversial issue, we examined the effect of dietary calcium and magnesium in the Abcc6(-/-) mouse, a PXE mouse model which mimics the clinical features of PXE. Abcc6(-/-) mice were placed on specific diets for 3, 7, and 12 months. Disease severity was measured by quantifying calcification of blood vessels in the kidney. Raising the calcium content in the diet from 0.5% to 2% did not change disease severity. In contrast, simultaneous increase of both calcium (from 0.5% to 2.0%) and magnesium (from 0.05% to 0.2%) slowed down the calcification significantly. Our present findings that increase in dietary magnesium reduces vascular calcification in a mouse model for PXE should stimulate further studies to establish a dietary intervention for PXE.


Asunto(s)
Vasos Sanguíneos/patología , Calcinosis/dietoterapia , Calcio/metabolismo , Magnesio/metabolismo , Seudoxantoma Elástico/dietoterapia , Transportadoras de Casetes de Unión a ATP/genética , Animales , Calcinosis/metabolismo , Calcinosis/patología , Suplementos Dietéticos , Eliminación de Gen , Riñón/irrigación sanguínea , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Miocardio/patología , Seudoxantoma Elástico/metabolismo , Seudoxantoma Elástico/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA