Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomedicines ; 11(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37371797

RESUMEN

In this study, we investigated the properties of human varicose vein (VV) endothelial cells (HVVEC) in comparison to the human umbilical vein endothelial cells (HUVEC). The cells were treated with three bioactive compounds with proven beneficial effects in the therapy of patients with VV, diosmin, escin, and bromelain. Two concentrations of tested drugs were used (1, 10 mg/mL), which did not affect the viability of either cell type. Escin led to a slight generation of reactive oxygen species in HUVEC cells. We observed a slight release of superoxide in HVVEC cells upon treatment with diosmin and escin. Diosmin and bromelain showed a tendency to release nitric oxide in HUVEC. Using membrane fluorescent probes, we demonstrated a reduced fluidity of HVVEC, which may lead to their increased adhesion, and, consequently, a much more frequent occurrence of venous thrombosis. For the first time, we show the mechanism of action of drugs used in VV therapy on endothelial cells derived from a VV. Studies with HVVEC have shown that tested drugs may lead to a reduction in the adhesive properties of these cells, and thus to a lower risk of thrombosis.

2.
Molecules ; 28(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36903535

RESUMEN

Diosmin and bromelain are bioactive compounds of plant origin with proven beneficial effects on the human cardiovascular system. We found that diosmin and bromelain slightly reduced total carbonyls levels and had no effect on TBARS levels, as well as slightly increased the total non-enzymatic antioxidant capacity in the RBCs at concentrations of 30 and 60 µg/mL. Diosmin and bromelain induced a significant increase in total thiols and glutathione in the RBCs. Examining the rheological properties of RBCs, we found that both compounds slightly reduce the internal viscosity of the RBCs. Using the MSL (maleimide spin label), we revealed that higher concentrations of bromelain led to a significant decrease in the mobility of this spin label attached to cytosolic thiols in the RBCs, as well as attached to hemoglobin at a higher concentration of diosmin, and for both concentrations of bromelain. Both compounds tended to decrease the cell membrane fluidity in the subsurface area, but not in the deeper regions. An increase in the glutathione concentration and the total level of thiol compounds promotes the protection of the RBCs against oxidative stress, suggesting that both compounds have a stabilizing effect on the cell membrane and improve the rheological properties of the RBCs.


Asunto(s)
Diosmina , Humanos , Diosmina/farmacología , Compuestos de Sulfhidrilo/metabolismo , Bromelaínas/farmacología , Eritrocitos/metabolismo , Estrés Oxidativo , Glutatión/metabolismo , Marcadores de Spin
3.
Nutrients ; 13(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34959865

RESUMEN

Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.


Asunto(s)
Antiinflamatorios/uso terapéutico , Anticoagulantes/uso terapéutico , Trastornos de la Coagulación Sanguínea/tratamiento farmacológico , Bromelaínas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Cardiotónicos/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Proteínas de Plantas/uso terapéutico , SARS-CoV-2 , Ananas/enzimología , Antiinflamatorios/química , Anticoagulantes/química , Bromelaínas/química , Cardiotónicos/química , Fibrinólisis/efectos de los fármacos , Humanos , Proteínas de Plantas/química
4.
Plant Cell Rep ; 39(8): 1013-1028, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32328702

RESUMEN

KEY MESSAGE: Induction of biphasic interphase-mitotic cells and PCC is connected with an increased level of metabolism in root meristem cells of Allium cepa. Previous experiments using primary roots of Allium cepa exposed to low concentrations of hydroxyurea have shown that long-term DNA replication stress (DRS) disrupts essential links of the S-M checkpoint mechanism, leading meristem cells either to premature chromosome condensation (PCC) or to a specific form of chromatin condensation, establishing biphasic organization of cell nuclei with both interphase and mitotic domains (IM cells). The present study supplements and extends these observations by describing general conditions under which both abnormal types of M-phase cells may occur. The analysis of root apical meristem (RAM) cell proliferation after prolonged mild DRS indicates that a broad spectrum of inhibitors is capable of generating PCC and IM organization of cell nuclei. These included: 5-aminouracil (5-AU, a thymine antagonist), characterized by the highest efficiency in creating cells with the IM phenotype, aphidicolin (APH), an inhibitor of DNA polymerase α, 5-fluorodeoxyuridine (FUdR), an inhibitor of thymidylate synthetase, methotrexate (MTX), a folic acid analog that inhibits purine and pyrimidine synthesis, and cytosine arabinoside (Ara-C), which inhibits DNA replication by forming cleavage complexes with topoisomerase I. As evidenced using fluorescence-based click chemistry assays, continuous treatment of onion RAM cells with 5-AU is associated with an accelerated dynamics of the DNA replication machinery and significantly enhanced levels of transcription and translation. Furthermore, DRS conditions bring about an intensified production of hydrogen peroxide (H2O2), depletion of reduced glutathione (GSH), and some increase in DNA fragmentation, associated with only a slight increase in apoptosis-like programmed cell death events.


Asunto(s)
Replicación del ADN/efectos de los fármacos , Interfase/efectos de los fármacos , Meristema/citología , Mitosis/efectos de los fármacos , Cebollas/citología , Uracilo/análogos & derivados , Apoptosis/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Daño del ADN , Fragmentación del ADN/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Cebollas/genética , Biosíntesis de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Transcripción Genética/efectos de los fármacos , Uracilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA