Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neuropharmacology ; 145(Pt A): 99-113, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29462694

RESUMEN

Potentiating social, cognitive, and sensorimotor stimulations the Environmental Enrichment (EE) increases levels of novelty and complexity experienced by individuals. Growing evidence demonstrates that parental EE experience, even occurring in the pre-reproductive phase, affects behavioral and neural developmental trajectories of the offspring. To discover how the accumulation of early maternal complex experiences may inform and shape the social behavior of the following generation, we examined the effects of pre-reproductive enrichment of dams (post-natal days 21-72) on the play performances of their male and female adolescent offspring. Furthermore, we examined the effects of pre-reproductive enrichment on maternal behavior (during post-partum days 1-10) and male intruder aggression (on post-partum day 11). Since oxytocin modulates maternal care, social bonding, and agonistic behavior, the number of oxytocinergic neurons of the paraventricular (PVN) and supraoptic (SON) nuclei was examined in both dams and offspring. Results revealed that enriched females exhibited higher levels of pup-oriented behaviors, especially Crouching, and initiated pup-retrieval more quickly than standard females after the maternal aggression test. Such behavioral peculiarities were accompanied by increased levels of oxytocinergic neurons in PVN and SON. Moreover, pre-reproductive maternal EE cross-generationally influenced the offspring according to sex. Indeed, male pups born to enriched females exhibited a reduced play fighting associated with a higher number of oxytocinergic neurons in SON in comparison to male pups born to standard-housed females. In conclusion, pre-reproductive EE to the mothers affects their maternal care and has a cross-generational impact on the social behavior of their offspring that do not directly experiences EE. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".


Asunto(s)
Ambiente , Neuronas/metabolismo , Oxitocina/metabolismo , Conducta Social , Agresión , Animales , Femenino , Vivienda para Animales , Hipotálamo/citología , Hipotálamo/metabolismo , Masculino , Conducta Materna/fisiología , Conducta Materna/psicología , Neuronas/citología , Distribución Aleatoria , Ratas Wistar , Factores de Tiempo
2.
Sci Rep ; 7(1): 9077, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28831054

RESUMEN

The muscarinic receptor response to acetylcholine regulates the hippocampal-related learning, memory, neural plasticity and the production and processing of the pro-nerve growth factor (proNGF) by hippocampal cells. The development and progression of diabetes generate a mild cognitive impairment reducing the functions of the septo-hippocampal cholinergic circuitry, depressing neural plasticity and inducing proNGF accumulation in the brain. Here we demonstrate, in a rat model of early type-1 diabetes, that a physical therapy, the electroacupuncture, counteracts the diabetes-induced deleterious effects on hippocampal physiology by ameliorating hippocampal-related memory functions; recovering the impaired long-term potentiation at the dentate gyrus (DG-LTP) and the lowered expression of the vesicular glutamate transporter 1; normalizing the activity-dependent release of proNGF in diabetic rat hippocampus. Electroacupuncture exerted its therapeutic effects by regulating the expression and activity of M1- and M2-acetylcholine muscarinic receptors subtypes in the dentate gyrus of hippocampus. Our results suggest that a physical therapy based on repetitive sensory stimulation could promote hippocampal neural activity, neuronal metabolism and functions, and conceivably improve the diabetes-induced cognitive impairment. Our data can support the setup of therapeutic protocols based on a better integration between physical therapies and pharmacology for the cure of diabetes-associated neurodegeneration and possibly for Alzheimer's disease.


Asunto(s)
Electroacupuntura , Hipocampo/metabolismo , Hipocampo/fisiopatología , Muscarina/metabolismo , Animales , Recuento de Células , Giro Dentado/metabolismo , Giro Dentado/fisiopatología , Diabetes Mellitus Experimental , Potenciación a Largo Plazo , Memoria , Modelos Biológicos , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Plasticidad Neuronal , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Células Piramidales/metabolismo , Células Piramidales/patología , Ratas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M2/metabolismo , Receptores Muscarínicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA