Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Toxicol ; 6: 1377542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605940

RESUMEN

Though the portfolio of medicines that are extending and improving the lives of patients continues to grow, drug discovery and development remains a challenging business on its best day. Safety liabilities are a significant contributor to development attrition where the costliest liabilities to both drug developers and patients emerge in late development or post-marketing. Animal studies are an important and influential contributor to the current drug discovery and development paradigm intending to provide evidence that a novel drug candidate can be used safely and effectively in human volunteers and patients. However, translational gaps-such as toxicity in patients not predicted by animal studies-have prompted efforts to improve their effectiveness, especially in safety assessment. More holistic monitoring and "digitalization" of animal studies has the potential to enrich study outcomes leading to datasets that are more computationally accessible, translationally relevant, replicable, and technically efficient. Continuous monitoring of animal behavior and physiology enables longitudinal assessment of drug effects, detection of effects during the animal's sleep and wake cycles and the opportunity to detect health or welfare events earlier. Automated measures can also mitigate human biases and reduce subjectivity. Reinventing a conservative, standardized, and traditional paradigm like drug safety assessment requires the collaboration and contributions of a broad and multi-disciplinary stakeholder group. In this perspective, we review the current state of the field and discuss opportunities to improve current approaches by more fully leveraging the power of sensor technologies, artificial intelligence (AI), and animal behavior in a home cage environment.

2.
Circ Res ; 125(9): 855-867, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31600125

RESUMEN

Given that cardiovascular safety concerns remain the leading cause of drug attrition at the preclinical drug development stage, the National Center for Toxicological Research of the US Food and Drug Administration hosted a workshop to discuss current gaps and challenges in translating preclinical cardiovascular safety data to humans. This white paper summarizes the topics presented by speakers from academia, industry, and government intended to address the theme of improving cardiotoxicity assessment in drug development. The main conclusion is that to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development. Potential regulatory applications of human-derived cardiomyocytes and future directions in employing human-relevant platforms to fill the gaps and overcome barriers and challenges in preclinical cardiovascular safety assessment were discussed. This paper is intended to serve as an initial step in a public-private collaborative development program for human-relevant cardiotoxicity tools, particularly for cardiotoxicities characterized by contractile dysfunction or structural injury.


Asunto(s)
Cardiotoxicidad/epidemiología , Cardiotoxinas/toxicidad , Educación/normas , Informe de Investigación/normas , United States Food and Drug Administration/normas , Animales , Cardiotoxicidad/prevención & control , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Evaluación Preclínica de Medicamentos/tendencias , Educación/tendencias , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Informe de Investigación/tendencias , Estados Unidos/epidemiología , United States Food and Drug Administration/tendencias
3.
ILAR J ; 57(2): 120-132, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-28053066

RESUMEN

Cardiovascular (CV) safety liabilities are significant concerns for drug developers and preclinical animal studies are predominately where those liabilities are characterized before patient exposures. Steady progress in technology and laboratory capabilities is enabling a more refined and informative use of animals in those studies. The application of surgically implantable and telemetered instrumentation in the acute assessment of drug effects on CV function has significantly improved historical approaches that involved anesthetized or restrained animals. More chronically instrumented animals and application of common clinical imaging assessments like echocardiography and MRI extend functional and in-life structural assessments into the repeat-dose setting. A growing portfolio of circulating CV biomarkers is allowing longitudinal and repeated measures of cardiac and vascular injury and dysfunction better informing an understanding of temporal pathogenesis and allowing earlier detection of undesirable effects. In vitro modeling systems of the past were limited by their lack of biological relevance to the in vivo human condition. Advances in stem cell technology and more complex in vitro modeling platforms are quickly creating more opportunity to supplant animals in our earliest assessments for liabilities. Continuing improvement in our capabilities in both animal and nonanimal modeling should support a steady decrease in animal use for primary liability identification and optimize the translational relevance of the animal studies we continue to do.


Asunto(s)
Experimentación Animal , Enfermedades Cardiovasculares/prevención & control , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Animales , Modelos Animales de Enfermedad , Humanos
4.
Regul Toxicol Pharmacol ; 65(1): 38-46, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23044254

RESUMEN

Cardiovascular (CV) safety concerns are a significant source of drug development attrition in the pharmaceutical industry today. Though current nonclinical testing paradigms have largely prevented catastrophic CV events in Phase I studies, many challenges relating to the inability of current nonclinical safety testing strategies to model patient outcomes persist. Contemporary approaches include a spectrum of evaluations of CV structure and function in a variety of laboratory animal species. These approaches might be improved with a more holistic integration of these evaluations in repeat-dose studies, addition of novel endpoints with greater sensitivity and translational application, and use of more relevant animal models. Particular opportunities present with advances in imaging capabilities applicable to rodent and non-rodent species, technical capabilities for measuring CV function in repeat-dose animal studies, detection and quantitation of microRNAs and wider use of alternative animal models. Strategic application of these novel opportunities considering putative CV risk associated with the molecular drug target as well as inherent risks present in the target patient population could tailor or 'personalize' nonclinical safety assessment as a more translational evaluation. This paper is a call to action for the clinical and nonclinical drug safety communities to assess these opportunities to determine their utility in filling potential gaps in our current cardiovascular safety testing paradigms.


Asunto(s)
Enfermedades Cardiovasculares/inducido químicamente , Diseño de Fármacos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Animales , Modelos Animales de Enfermedad , Industria Farmacéutica/métodos , Determinación de Punto Final , Humanos , MicroARNs/metabolismo , Proyectos de Investigación , Medición de Riesgo/métodos , Especificidad de la Especie
5.
Toxicol Pathol ; 39(6): 1003-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21859882

RESUMEN

The global practice of drug development is expanding into many different continents and countries. India, in particular, is rapidly emerging as an economic force in this arena by offering ever-expanding opportunities for pharmaceutical market expansion as well as productive drug development partnerships. The key to the country's current socioeconomic success appears to be education, particularly the development of higher and professional education. Also, recent modifications to India's patent laws offer greater protections and incentives for international investment. Increasing numbers of competent contract research organizations create attractive opportunities for large Western pharmaceutical companies with a desire to gain access to burgeoning markets as well as mitigate the rising cost of drug development with less costly services. Well-trained veterinary pathologists are available, appropriate facilities are being constructed, and laboratory capabilities are expanding. Developing a productive partnership with a credible laboratory service in India, as with any new provider, requires due diligence and knowledgeable scrutiny of key elements of the work stream, such as facilities, education and training of laboratory personnel, Good Laboratory Practices, animal care, timelines, and data management. Ultimately and with appropriate management, mutually beneficial drug development partnerships are available in India.


Asunto(s)
Descubrimiento de Drogas/legislación & jurisprudencia , Descubrimiento de Drogas/métodos , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Guías como Asunto , India , Inversiones en Salud , Personal de Laboratorio , Patentes como Asunto , Patología/métodos , Toxicología/métodos
6.
Toxicol Sci ; 120(2): 262-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21242511

RESUMEN

In the clinical setting, natriuretic peptides (NPs) have proven to be reliable noninvasive markers for diagnostic, prognostic, and therapeutic monitoring of heart failure. Given their proven utility in humans, NPs are potential candidates for translational biomarkers during drug development to detect drug-induced hemodynamic stress resulting in cardiac hypertrophy in preclinical species. We evaluated the intra- and interassay precision and the stability of serum N-terminal-proatrial natriuretic peptide (NT-proANP) using a commercially available enzyme-linked immunoassay (EIA). We then measured NT-proANP concentrations in 532 serum samples from 337 male Crl:CD(SD) rats with or without pressure-induced cardiac hypertrophy. Additionally, we established a reference range using samples from control animals across multiple studies. The data demonstrate that the NT-proANP EIA is a robust and reproducible assay for the measurement of NT-proANP. The noninvasive translational utility, minimal sample volume requirement, and the lack of existing hypertrophic biomarkers in the male rat make NT-proANP an excellent candidate for further interrogation as a biomarker of cardiac hypertrophy in preclinical toxicology investigations.


Asunto(s)
Factor Natriurético Atrial/sangre , Cardiomiopatía Hipertrófica/sangre , Precursores de Proteínas/sangre , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Masculino , Estabilidad Proteica , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
7.
Am Heart J ; 158(1): 21-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19540388

RESUMEN

Cardiac troponins (cTns) are established biomarkers of ischemic heart disease in humans. However, their value as biomarkers of cardiac injury from causes other than ischemic heart disease is now being explored, particularly in drug development. In a workshop sponsored by the Cardiac Troponin Biomarker Working Group of the Health and Environmental Sciences Institute, preclinical, clinical, and regulatory scientists discussed the application of cTns in their respective environments, issues in translating the preclinical application of cTn to clinical studies, and gaps in our understanding of cTn biology and pathobiology. Evidence indicates that cTns are sensitive and specific biomarkers of cardiac injury from varying causes in both animals and humans. Accordingly, monitoring cTns can help ensure patient safety during the clinical evaluation of new drugs. In addition, preclinical characterization of cardiac risk and cTns as biomarkers of that risk can guide relevant clinical application and interpretation. We summarize here the outcomes of the workshop which included consensus statements, recommendations for further research, and a proposal for a cross-disciplinary group of clinical, regulatory, and drug development scientists to collaborate in such research.


Asunto(s)
Cardiomiopatías/inducido químicamente , Cardiomiopatías/diagnóstico , Troponina/sangre , Animales , Cardiomiopatías/sangre , Ensayos Clínicos como Asunto , Conducta Cooperativa , Evaluación Preclínica de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Educación , Humanos , Comunicación Interdisciplinaria , Monitoreo Fisiológico , Valor Predictivo de las Pruebas , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA