Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Inherit Metab Dis ; 43(3): 392-408, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31808946

RESUMEN

Since the first description of galactosemia in 1908 and despite decades of research, the pathophysiology is complex and not yet fully elucidated. Galactosemia is an inborn error of carbohydrate metabolism caused by deficient activity of any of the galactose metabolising enzymes. The current standard of care, a galactose-restricted diet, fails to prevent long-term complications. Studies in cellular and animal models in the past decades have led to an enormous progress and advancement of knowledge. Summarising current evidence in the pathophysiology underlying hereditary galactosemia may contribute to the identification of treatment targets for alternative therapies that may successfully prevent long-term complications. A systematic review of cellular and animal studies reporting on disease complications (clinical signs and/or biochemical findings) and/or treatment targets in hereditary galactosemia was performed. PubMed/MEDLINE, EMBASE, and Web of Science were searched, 46 original articles were included. Results revealed that Gal-1-P is not the sole pathophysiological agent responsible for the phenotype observed in galactosemia. Other currently described contributing factors include accumulation of galactose metabolites, uridine diphosphate (UDP)-hexose alterations and subsequent impaired glycosylation, endoplasmic reticulum (ER) stress, altered signalling pathways, and oxidative stress. galactokinase (GALK) inhibitors, UDP-glucose pyrophosphorylase (UGP) up-regulation, uridine supplementation, ER stress reducers, antioxidants and pharmacological chaperones have been studied, showing rescue of biochemical and/or clinical symptoms in galactosemia. Promising co-adjuvant therapies include antioxidant therapy and UGP up-regulation. This systematic review provides an overview of the scattered information resulting from animal and cellular studies performed in the past decades, summarising the complex pathophysiological mechanisms underlying hereditary galactosemia and providing insights on potential treatment targets.


Asunto(s)
Galactosemias/genética , Galactosemias/fisiopatología , Animales , Modelos Animales de Enfermedad , Galactoquinasa/genética , Galactoquinasa/metabolismo , Galactosa/metabolismo , Galactosemias/metabolismo , Galactosemias/terapia , Genotipo , Humanos , Estrés Oxidativo , Fenotipo , UDPglucosa 4-Epimerasa/genética , UDPglucosa 4-Epimerasa/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo
2.
Orphanet J Rare Dis ; 13(1): 212, 2018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30477550

RESUMEN

BACKGROUND: Classic galactosemia is a rare genetic metabolic disease with an unmet treatment need. Current standard of care fails to prevent chronically-debilitating brain and gonadal complications. Many mutations in the GALT gene responsible for classic galactosemia have been described to give rise to variants with conformational abnormalities. This pathogenic mechanism is highly amenable to a therapeutic strategy based on chemical/pharmacological chaperones. Arginine, a chemical chaperone, has shown beneficial effect in other inherited metabolic disorders, as well as in a prokaryotic model of classic galactosemia. The p.Q188R mutation presents a high prevalence in the Caucasian population, making it a very clinically relevant mutation. This mutation gives rise to a protein with lower conformational stability and lower catalytic activity. The aim of this study is to assess the potential therapeutic role of arginine for this mutation. METHODS: Arginine aspartate administration to four patients with the p.Q188R/p.Q188R mutation, in vitro studies with three fibroblast cell lines derived from classic galactosemia patients as well as recombinant protein experiments were used to evaluate the effect of arginine in galactose metabolism. This study has been registered at https://clinicaltrials.gov (NCT03580122) on 09 July 2018. Retrospectively registered. RESULTS: Following a month of arginine administration, patients did not show a significant improvement of whole-body galactose oxidative capacity (p = 0.22), erythrocyte GALT activity (p = 0.87), urinary galactose (p = 0.52) and urinary galactitol levels (p = 0.41). Patients' fibroblasts exposed to arginine did not show changes in GALT activity. Thermal shift analysis of recombinant p.Q188R GALT protein in the presence of arginine did not exhibit a positive effect. CONCLUSIONS: This short pilot study in four patients homozygous for the p.Q188R/p.Q188R mutation reveals that arginine has no potential therapeutic role for galactosemia patients homozygous for the p.Q188R mutation.


Asunto(s)
Arginina/uso terapéutico , Galactosemias/tratamiento farmacológico , Galactosemias/genética , Mutación/genética , Ácido Aspártico/uso terapéutico , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Galactosa/metabolismo , Humanos , Errores Innatos del Metabolismo/tratamiento farmacológico , Errores Innatos del Metabolismo/genética , Estudios Retrospectivos
3.
J Inherit Metab Dis ; 34(2): 345-55, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21246399

RESUMEN

Classic Galactosemia due to galactose-1-phosphate uridyltransferase (GALT) deficiency is associated with apparent diet-independent complications including cognitive impairment, learning problems and speech defects. As both galactose-1-phosphate and galactitol may be elevated in cord blood erythrocytes and amniotic fluid despite a maternal lactose-free diet, endogenous production of galactose may be responsible for the elevated fetal galactose metabolites, as well as postnatal CNS complications. A prenatal deficiency of myo-inositol due to an accumulation of both galactose-1- phosphate and galactitol may play a role in the production of the postnatal CNS dysfunction. Two independent mechanisms may result in fetal myo-inositol deficiency: competitive inhibition of the inositol monophosphatase1 (IMPA1)-mediated hydrolysis of inositol monophosphate by high galactose-1- phosphate levels leading to a sequestration of cellular myo-inositol as inositol monophosphate and galactitol-induced reduction in SMIT1-mediated myo-inositol transport. The subsequent reduction of myo-inositol within fetal brain cells could lead to inositide deficiencies with resultant perturbations in calcium and protein kinase C signaling, the AKT/mTOR/ cell growth and development pathway, cell migration, insulin sensitivity, vescular trafficking, endocytosis and exocytosis, actin cytoskeletal remodeling, nuclear metabolism, mRNA export and nuclear pore complex regulation, phosphatidylinositol-anchored proteins, protein phosphorylation and/or endogenous iron "chelation". Using a knockout animal model we have shown that a marked deficiency of myo-inositol in utero is lethal but the phenotype can be rescued by supplementing the drinking water of the pregnant mouse. If myo-inositol deficiency is found to exist in the GALT-deficient fetal brain, then the use of myo-inositol to treat the fetus via oral supplementation of the pregnant female may warrant consideration.


Asunto(s)
Enfermedades del Sistema Nervioso Central/diagnóstico , Galactosemias/diagnóstico , Galactosemias/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/deficiencia , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Quelantes/farmacología , Femenino , Galactosa/metabolismo , Humanos , Hidrólisis , Ratones , Monoéster Fosfórico Hidrolasas/metabolismo , Embarazo , Preñez , ARN Mensajero/metabolismo , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética
4.
Mol Genet Metab ; 95(1-2): 81-95, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18675571

RESUMEN

Ablation of the murine Slc5a3 gene results in severe myo-inositol (Ins) deficiency and congenital central apnea due to abnormal respiratory rhythmogenesis. The lethal knockout phenotype may be rescued by supplementing the maternal drinking water with 1% Ins. In order to test the hypothesis that Ins deficiency leads to inositide deficiencies, which are corrected by prenatal treatment, we measured the effects of Ins rescue on Ins, phosphatidylinositol (PtdIns) and myo-inositol polyphosphate levels in brains of E18.5 knockout fetuses. As the Slc5a3 gene structure is unique in the sodium/solute cotransporter (SLC5) family, and exon 1 is shared with the mitochondrial ribosomal protein subunit 6 (Mrps6) gene, we also sought to determine whether expression of its cognate Mrps6 gene is abnormal in knockout fetuses. The mean level of Ins was increased by 92% in brains of rescued Slc5a3 knockout fetuses (0.48 versus 0.25 nmol/mg), but was still greatly reduced in comparison to wildtype (6.97 nmol/mg). The PtdIns, InsP(5) and InsP(6) levels were normal without treatment. Mrps6 gene expression was unaffected in the E18.5 knockout fetuses. This enigmatic model is not associated with neonatal PtdIns deficiency and rescue of the phenotype may be accomplished without restoration of Ins. The biochemical mechanism that both uniformly leads to death and allows for Ins rescue remains unknown. In conclusion, in neonatal brain tissue, Mrps6 gene expression may not be contingent on function of its embedded Slc5a3 gene, while inositide deficiency may not be the mechanism of lethal apnea in null Slc5a3 mice.


Asunto(s)
Apnea/metabolismo , Encéfalo/metabolismo , Expresión Génica , Inositol/metabolismo , Proteínas Mitocondriales/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas Ribosómicas/metabolismo , Simportadores/deficiencia , Secuencia de Aminoácidos , Animales , Apnea/embriología , Apnea/genética , Apnea/patología , Encéfalo/embriología , Encéfalo/patología , Humanos , Ratones , Ratones Noqueados , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Fenotipo , Filogenia , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Alineación de Secuencia , Médula Espinal , Simportadores/química , Simportadores/genética , Vertebrados/clasificación , Vertebrados/genética
5.
Nestle Nutr Workshop Ser Pediatr Program ; 62: 55-75; discussion 75-80, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18626193

RESUMEN

The concept of chemical individuality was introduced by Garrod in 1908. Inheritance of Mendelian traits including disease states has finally reached a new level of understanding based on the modern principles of gene expression coupled with new insight into the metabolism of RNA species and protein. Over 300 different perturbations in metabolite profiles with their identifying alteration(s) in protein and/or gene structure and/or function have been identified in the past 100 years. With the realization in 1953 that the sentinel disease, phenylketonuria, can be effectively treated by nutritional manipulation tailored to the needs of each individual, we have essentially entered a new phase in metabolic medicine, namely that of nutritional therapeutics. The infant destined for a lifetime of cognitive and motoric handicaps may be rescued by the implementation of a nutritional prescription in early development. Patients with inherited defects that impact on intermediary metabolism need to receive nutritional therapy on an individualized basis. Metabolic profiling, i.e., the array of small molecules or analytes, as well as large macromolecules, measured with precision in body fluids or tissues, can be used to devise a nutritional therapeutic plan, as well as serve as endpoints to evaluate the biochemical efficacy of intervention.


Asunto(s)
Dermatoglifia del ADN/métodos , Trastornos Nutricionales/dietoterapia , Trastornos Nutricionales/genética , Terapia Nutricional/métodos , Predisposición Genética a la Enfermedad , Humanos , Lactante , Trastornos de la Nutrición del Lactante/dietoterapia , Trastornos de la Nutrición del Lactante/genética , Recién Nacido , Terapia Nutricional/normas , Fenilcetonurias/genética , Fenilcetonurias/terapia
6.
Bipolar Disord ; 10(4): 453-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18452441

RESUMEN

OBJECTIVE: Lithium inhibits inositol monophosphatase and also reduces inositol transporter function. To determine if one or more of these mechanisms might underlie the behavioral effects of lithium, we studied inositol transporter knockout mice. We previously reported that heterozygous knockout mice with reduction of 15-37% in brain inositol had no abnormalities of pilocarpine sensitivity or antidepressant-like behavior in the Porsolt forced swim test. We now report on studies of homozygous inositol transporter knockout mice. METHODS: Homozygote knockout mice were rescued by 2% inositol supplementation to the drinking water of the dam mice through pregnancy and lactation. Genotyping was carried out by polymerase chain reaction followed by agarose electrophoresis. Brain free myo-inositol levels were determined gas-chromatographically. Motor activity and coordination were assessed by the rotarod test. Behavior of the mice was studied in lithium-pilocarpine seizure models for lithium action and in the Porsolt forced swim test model for depression. RESULTS: In homozygote knockout mice, free inositol levels were reduced by 55% in the frontal cortex and by 60% in the hippocampus. There were no differences in weight or motor coordination by the rotarod test. They behaved similarly to lithium-treated animals in the model of pilocarpine seizures and in the Porsolt forced swimming test model of depression. CONCLUSIONS: Reduction of brain inositol more than 15-37% may be required to elicit lithium-like neurobehavioral effects.


Asunto(s)
Encéfalo/efectos de los fármacos , Compuestos de Litio/farmacología , Fenotipo , Convulsiones/metabolismo , Transportador 1 de Sodio-Glucosa/deficiencia , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Inositol/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Pilocarpina/farmacología , Desempeño Psicomotor/efectos de los fármacos , Convulsiones/inducido químicamente , Convulsiones/genética , Convulsiones/patología , Natación
7.
Pediatrics ; 112(5): 1005-15, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14595039

RESUMEN

OBJECTIVE: To determine whether newborn screening by tandem mass spectrometry (MS/MS) for medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is cost-effective versus not screening and to define the contributions of disease, test, and population parameters on the decision. METHODS: A decision-analytic Markov model was designed to perform cost-effectiveness and cost-utility analyses measuring the discounted, incremental cost per life-year saved and per quality-adjusted life-year saved of newborn screening for MCADD compared with not screening. A hypothetical cohort of neonates made transitions among a set of health states that reflected clinical status, morbidity, and cost. Outcomes were estimated for time horizons of 20 and 70 years. Probabilities and costs were derived from a retrospective chart review of a 32-patient cohort treated over the past 30 years at the Children's Hospital of Philadelphia, clinical experience with MCADD patient management, patient-family interviews, cost surveys, state sources, and published studies. In addition to older patients who came to medical attention by symptomatic presentation, our patient group included 6 individuals whose MCADD had been diagnosed by supplemental newborn screening. Estimates of the expected net changes in costs and life expectancy for MCADD screening were used to compute the incremental cost-effectiveness ratios. Sensitivity analyses were performed on key input variables, and 95% confidence intervals (CIs) were computed through second-order Monte Carlo simulations. RESULTS: In our base-case analysis over the first 20 years of life, the cost of newborn screening for MCADD was approximately 11,000 dollars(2001 US dollars; 95% CI: <0-33,800 dollars) per life-year saved, or 5600 dollars (95% CI: <0-17,100 dollars) per quality-adjusted life-year saved compared with not screening. Over a 70-year horizon, the respective ratios were approximately 300 dollars (95% CI: <0-13,000 dollars) and 100 dollars (95% CI: <0-6900 dollars). The results were robust when tested over plausible ranges for diagnostic test sensitivity and specificity, MCADD prevalence, asymptomatic rate, and screening cost. CONCLUSIONS: Simulation modeling indicates that newborn screening for MCADD reduces morbidity and mortality at an incremental cost below the range for accepted health care interventions. At the 70-year horizon, the model predicts that almost all of the additional costs of screening would be offset by avoided sequelae.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Simulación por Computador , Pruebas Genéticas/economía , Errores Innatos del Metabolismo Lipídico/diagnóstico , Espectrometría de Masas/métodos , Modelos Teóricos , Tamizaje Neonatal/economía , Acil-CoA Deshidrogenasa/sangre , Acil-CoA Deshidrogenasa/genética , Estudios de Cohortes , Análisis Costo-Beneficio , Ácidos Grasos/metabolismo , Pruebas Genéticas/métodos , Humanos , Incidencia , Recién Nacido , Errores Innatos del Metabolismo Lipídico/economía , Errores Innatos del Metabolismo Lipídico/enzimología , Errores Innatos del Metabolismo Lipídico/epidemiología , Cadenas de Markov , Tamizaje Neonatal/métodos , Años de Vida Ajustados por Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA