Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Chem ; 405(Pt B): 135026, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36442242

RESUMEN

Arabica roast coffee contains a substantial amount of water soluble atractyligenin-2-O-ß-d-glucoside, which is ingested by consumption of coffee brew. Metabolomics data suggest this coffee compound is excreted as glucuronides, but the structures of conjugates have not been elucidated so far. We collected coffee drinkers' urine and isolated four metabolites by MS-guided liquid chromatographic fractionation. The structures were investigated by nuclear magnetic resonance (NMR) and time-of-flight mass spectrometry (ToF-MS) and identified as atractyligenin-19-O-ß-d-glucuronide (M1), 2ß-hydroxy-15-oxoatractylan-4α-carboxy-19-O-ß-d-glucuronide (M2), and 2ß-hydroxy-15-oxoatractylan-4α-carboxylic acid-2-O-ß-d-glucuronide (M3). An unconjugated metabolite (M4) was confirmed as atractyligenin. We analyzed spot urines from n = 6 coffee drinking individuals and detected the metabolites M1, M2 and M4 in every sample, and M3 in four out of six samples, suggesting interindividual differences in metabolism.


Asunto(s)
Coffea , Café , Humanos , Glucósidos , Glucurónidos , Atractilósido
2.
J Agric Food Chem ; 67(17): 4774-4781, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30963762

RESUMEN

Targeted analysis of Coffea arabica and Coffea canephora green coffees (total sample size n = 57) confirmed 2- O-ß-d-glucopyranosyl-carboxyatractyligenin (6) as the quantitatively dominating carboxyatractyligenin derivative. Its abundance in Arabicas (2425 ± 549 nmol/g, n = 48) exceeded that in Robustas (34 ± 12 nmol/g, n = 9) roughly by a factor of 70. Coffee processing involving heat (e.g., steam treatment and decaffeination) reduced concentrations of 6 and increased those of the decarboxylated derivative. The bioavailability of compound 6 in Caenorhabditis elegans was demonstrated by ultraperformance liquid chromatography-tandem mass spectrometry analysis of extracts prepared from nematode cultures incubated in a liquid medium containing 6. A toxicity assay performed to assess the impact of 6 in vivo showed a 20-fold higher median lethal dose (LD50 = 11.7 ± 1.2 mM) concentration compared to that of the known phytotoxic adenine-nucleotide transporters inhibitor carboxyatractyloside (2, LD50 = 0.61 ± 0.05 mM), whereas 1 mM 6 and 0.1 mM 2 were sufficient to decrease the survival of wild type C. elegans, already 10-20-fold lower doses reduced reproduction. Because the insulin/insulin-like growth factors signaling cascade (IIS) is a key regulator of life span and stress resistance, the impact of compound 6 on the survival of long-living daf-2 C. elegans was tested. As the susceptibility of these nematodes to 6 was as high as that in wild type, an impact on central metabolic processes independent of IIS was suggested. Analysis of the in vivo adenosine triphosphate (ATP) content of adult C. elegans revealed no changes after 1 and 24 h, but a 50% reduction after treatment with 1 mM 6 during the entire postembryonic development. These data speak for a developmental-stage-dependent modulation of the ATP pool by 6.


Asunto(s)
Atractilósido/análogos & derivados , Caenorhabditis elegans/efectos de los fármacos , Coffea/química , Preparaciones de Plantas/farmacología , Adenosina Trifosfato/metabolismo , Animales , Atractilósido/farmacocinética , Atractilósido/farmacología , Disponibilidad Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Coffea/toxicidad , Café/química , Femenino , Insulina/genética , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Dosificación Letal Mediana , Masculino
3.
J Agric Food Chem ; 63(48): 10492-9, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26585544

RESUMEN

Sensory-guided fractionation of a roasted coffee beverage revealed a highly polar, bitter-tasting subfraction, from which the furokaurane glucoside mozambioside was isolated and identified in its chemical structure by means of HDMS and NMR spectra. Sensory evaluation revealed a bitter taste recognition threshold of 60 (± 10) µmol/L. UPLC-HDMS quantitation of raw coffee beans showed that Arabica coffees contained 396-1188 nmol/g mozambioside, whereas only traces (<5 nmol/g) were detected in Robusta coffees, thus suggesting that mozambioside can be used as an analytical marker for Arabica coffee. Roasted Arabica contained a substantially reduced concentration (232 ± 37 nmol/g), indicating partial degradation of mozambioside during coffee roasting. Mozambioside was nearly quantitatively extracted into the aqueous brew during coffee-making (86-98%).


Asunto(s)
Coffea/química , Café/química , Glucósidos/química , Extractos Vegetales/química , Gusto , Cromatografía Líquida de Alta Presión , Culinaria , Calor , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Estructura Molecular , Semillas/química , Especificidad de la Especie
4.
Food Chem Toxicol ; 70: 198-204, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24863614

RESUMEN

Capsules, powders and tablets containing raw coffee extract are advertised to the consumer as antioxidant rich dietary supplements as part of a healthy diet. We isolated carboxyatractyligenin (4), 2-O-ß-d-glucopyranosyl carboxyatractyligenin (6) and 3'-O-ß-d-glucopyranosyl-2'-O-isovaleryl-2ß-(2-desoxy-carboxyatractyligenin)-ß-d-glucopyranoside (8) from green coffee and found strong inhibitory effects on phosphorylating respiration in isolated mitochondria similar to the effects of the known phytotoxin carboxyatractyloside. LC-MS/MS analysis of commercial green coffee based dietary supplements revealed the occurrence of carboxyatractyligenin, 3'-O-ß-d-glucopyranosyl-2'-O-isovaleryl-2ß-(2-desoxy-carboxyatractyligenin)-ß-d-glucopyranoside, and 2-O-ß-d-glucopyranosyl carboxyatractyligenin in concentrations up to 4.0, 5.7, and 41.6µmol/g, respectively. These data might help to gain first insight into potential physiological side-effects of green coffee containing dietary supplement.


Asunto(s)
Atractilósido/análogos & derivados , Café/química , Suplementos Dietéticos , Translocasas Mitocondriales de ADP y ATP/metabolismo , Animales , Antioxidantes/farmacología , Atractilósido/farmacología , Cromatografía Liquida , Manipulación de Alimentos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Translocasas Mitocondriales de ADP y ATP/antagonistas & inhibidores , Fosforilación , Polvos/química , Espectrometría de Masas en Tándem
5.
Anal Bioanal Chem ; 405(26): 8487-503, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23982107

RESUMEN

Habitual consumption of medium amounts of coffee over the whole life-span is hypothesized to reduce the risk to develop diabetes type 2 (DM2) and Alzheimer's disease (AD). To identify putative bioactive coffee-derived metabolites, first, pooled urine from coffee drinkers and non-coffee drinkers were screened by UPLC-HDMS. After statistical data analysis, trigonelline, dimethylxanthines and monomethylxanthines, and ferulic acid conjugates were identified as the major metabolites found after coffee consumption. For quantitative analysis of these markers in body fluids, targeted methods based on stable-isotope dilution and UPLC-MS/MS were developed and applied to plasma samples from a coffee intervention study (n = 13 volunteers) who consumed a single cup of caffeinated coffee brew after a 10-day washout period. Chlorogenic acid-derived metabolites were found to be separated into two groups showing different pharmacokinetic properties. The first group comprised, e.g., ferulic acid and feruloyl sulfate and showed early appearance in the plasma (~1 h). The second group contained particularly chlorogenic acid metabolites formed by the intestinal microflora, appearing late and persisting in the plasma (>6 h). Trigonelline appeared early but persisted with calculated half-life times ~5 h. The plasma levels of caffeine metabolites significantly and progressively increased 2-4 h after coffee consumption and did not reach c max within the time frame of the study. The pharmacokinetic profiles suggest that particularly trigonelline, caffeine, its metabolites, as well as late appearing dihydroferulic acid, feruloylglycine and dihydroferulic acid sulfate formed from chlorogenic acid by the intestinal microflora accumulate in the plasma due to their long half-life times during habitual consumption of several cups of coffee distributed over the day. Since some of these metabolites have been reported to show antioxidant effects in vivo, antioxidant-response-element activating potential, and neuroprotective properties, respectively, some of these key metabolites might account for the inflammation- and DM2/AD risk reducing effects reported for habitual life time consumption of coffee.


Asunto(s)
Alcaloides/metabolismo , Cafeína/metabolismo , Ácido Clorogénico/metabolismo , Café/metabolismo , Ácidos Cumáricos/metabolismo , Xantinas/metabolismo , Adulto , Alcaloides/sangre , Alcaloides/orina , Cafeína/sangre , Cafeína/orina , Ácido Clorogénico/sangre , Ácido Clorogénico/orina , Ácidos Cumáricos/sangre , Ácidos Cumáricos/orina , Femenino , Humanos , Masculino , Espectrometría de Masas en Tándem , Xantinas/sangre , Xantinas/orina , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA