Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Qual ; 46(5): 1131-1136, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28991973

RESUMEN

Climate projections for the future indicate that the United Kingdom will experience hotter, drier summers and warmer, wetter winters, bringing longer dry periods followed by rewetting. This will result in changes in phosphorus (P) mobilization patterns that will influence the transfer of P from land to water. We tested the hypothesis that changes in the future patterns of drying-rewetting will affect the amount of soluble reactive phosphorus (SRP) solubilized from soil. Estimations of dry period characteristics (duration and temperature) under current and predicted climate were determined using data from the UK Climate Projections (UKCP09) Weather Generator tool. Three soils (sieved <2 mm), collected from two regions of the United Kingdom with different soils and farm systems, were dried at 25°C for periods of 0, 2, 4, 5, 6, 8, 10, 15, 20, 25, 30, 60, and 90 d, then subsequently rewetted (50 mL over 2 h). The solubilized leachate was collected and analyzed for SRP. In the 2050s, warm period temperature extremes >25°C are predicted in some places and dry periods of 30 to 90 d extremes are predicted. Combining the frequency of projected dry periods with the SRP concentration in leachate suggests that this may result overall in increased mobilization of P; however, critical breakpoints of 6.9 to 14.5 d dry occur wherein up to 28% more SRP can be solubilized following a rapid rewetting event. The precise cause of this increase could not be identified and warrants further investigation as the process is not currently included in P transfer models.


Asunto(s)
Cambio Climático , Fósforo/análisis , Suelo/química , Agricultura , Microbiología del Suelo
2.
Sci Total Environ ; 548-549: 325-339, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26803731

RESUMEN

We hypothesise that climate change, together with intensive agricultural systems, will increase the transfer of pollutants from land to water and impact on stream health. This study builds, for the first time, an integrated assessment of nutrient transfers, bringing together a) high-frequency data from the outlets of two surface water-dominated, headwater (~10km(2)) agricultural catchments, b) event-by-event analysis of nutrient transfers, c) concentration duration curves for comparison with EU Water Framework Directive water quality targets, d) event analysis of location-specific, sub-daily rainfall projections (UKCP, 2009), and e) a linear model relating storm rainfall to phosphorus load. These components, in combination, bring innovation and new insight into the estimation of future phosphorus transfers, which was not available from individual components. The data demonstrated two features of particular concern for climate change impacts. Firstly, the bulk of the suspended sediment and total phosphorus (TP) load (greater than 90% and 80% respectively) was transferred during the highest discharge events. The linear model of rainfall-driven TP transfers estimated that, with the projected increase in winter rainfall (+8% to +17% in the catchments by 2050s), annual event loads might increase by around 9% on average, if agricultural practices remain unchanged. Secondly, events following dry periods of several weeks, particularly in summer, were responsible for high concentrations of phosphorus, but relatively low loads. The high concentrations, associated with low flow, could become more frequent or last longer in the future, with a corresponding increase in the length of time that threshold concentrations (e.g. for water quality status) are exceeded. The results suggest that in order to build resilience in stream health and help mitigate potential increases in diffuse agricultural water pollution due to climate change, land management practices should target controllable risk factors, such as soil nutrient status, soil condition and crop cover.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Agricultura , Cambio Climático , Ríos/química , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA