Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(3): 241, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324063

RESUMEN

Phytochemicals are broadly acknowledged for their health-promoting effects owing to the fact of their capacity to counteract free radicals (e.g., superoxide anion radical, hydroxyl radical, hydroperoxyl radical, singlet oxygen, hypochlorite, and nitric oxide) and shield against oxidative stress induced by environmental factors. This study aimed to investigate the relationship between altitude, morphology, soil parameters, in vitro antioxidant potential and phytochemical composition of Phlomis cashmeriana collected from four different locations of Kashmir Himalaya characterized by diverse habitats and elevations. Various factors, such as extraction method, solvent polarity, and habitat conditions, can impact the quantity and efficacy of phytochemicals in plants. The aim of current study was to analyze phytochemical composition and antioxidant activity of P. cashmeriana, an important medicinal plant found in the Kashmir Himalaya region. The antioxidant activity was accessed using several assays and the plant populations were selected based on their diverse habitat features and altitudes. HR-LCMS was conducted for both below-ground and above-ground parts. Some important compounds such as, catechin, vinainsenoside, acutilobin, and kaempferol were reported for the first time from P. cashmeriana. Results showed that methanol was the most efficient solvent for extracting phytochemicals. During the current study, it was also found that the below-ground parts exhibited superior antioxidant activity compared to the above-ground parts. Notably, Site IV demonstrated the highest antioxidant potential; a positive correlation between altitude and antioxidant activity was also found. In conclusion, present research identified specific elite populations having highest antioxidant potential and are well-suited for large-scale cultivation of P. cashmeriana.


Asunto(s)
Antioxidantes , Phlomis , Himalayas , Monitoreo del Ambiente , Fitoquímicos , Solventes
2.
Environ Monit Assess ; 195(5): 623, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115430

RESUMEN

Climate change is one of the primary causes of species redistribution and biodiversity loss, especially for threatened and endemic important plant species. Therefore, it is vital to comprehend "how" and "where" priority medicinal and aromatic plants (MAPs) might be effectively used to address conservation-related issues under rapid climate change. In the present study, an ensemble modelling approach was used to investigate the present and future distribution patterns of Aquilegia fragrans Benth. under climate change in the entire spectrum of Himalayan biodiversity hotspot. The results of the current study revealed that, under current climatic conditions, the northwest states of India (Jammu and Kashmir, Himachal Pradesh and the northern part of Uttarakhand), the eastern and southern parts of Pakistan Himalaya have highly suitable climatic conditions for the growth of A. fragrans. The ensemble model exhibited high forecast accuracy, with temperature seasonality and precipitation seasonality as the main climatic variables responsible for the distribution of the A. fragrans in the biodiversity hotspot. Furthermore, the study predicted that future climate change scenarios will diminish habitat suitability for the species by -46.9% under RCP4.5 2050 and -55.0% under RCP4.5 2070. Likewise, under RCP8.5, the habitat suitability will decrease by -51.7% in 2050 and -94.3% in 2070. The current study also revealed that the western Himalayan area will show the most habitat loss. Some currently unsuitable regions, such as the northern Himalayan regions of Pakistan, will become more suitable under climate change scenarios. Hopefully, the current approach may provide a robust technique and showcases a model with learnings for predicting cultivation hotspots and developing scientifically sound conservation plans for this endangered medicinal plant in the Himalayan biodiversity hotspot.


Asunto(s)
Aquilegia , Cambio Climático , Monitoreo del Ambiente , Ecosistema , Biodiversidad
3.
Antioxidants (Basel) ; 11(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35739952

RESUMEN

Aconitum chasmanthum Stapf ex Holmes, an essential and critically endangered medicinal plant from Kashmir Himalayas, was studied for its antioxidant and antifungal properties. The shade-dried powdered rhizome was extracted sequentially with hexane, ethyl acetate, and methanol. These subsequent fractions were evaluated for total phenolic content (TPC); total flavonoid content (TFC); antioxidant assays, such as 1,1-diphenyl 1-2-picryl-hydrazyl (DPPH); ferric-reducing antioxidant power (FRAP); superoxide radical scavenging (SOR); hydroxyl radical scavenging (OH) and antifungal activity using the poisoned food technique. Highest TPC (5.26 ± 0.01 mg/g) and TFC (2.92 ± 0.04 mg/g) were reported from methanolic extracts. The highest values of radical scavenging activities were also observed in methanolic extracts with IC50 values of 163.71 ± 2.69 µg/mL in DPPH, 173.69 ± 4.91 µg/mL in SOR and 159.64 ± 2.43 µg/mL in OH. The chemical profile of ethyl acetate extract was tested using HR-LCMS. Methanolic extracts also showed a promising inhibition against Aspergillus niger (66.18 ± 1.03), Aspergillus flavus (78.91 ± 1.19) and Penicillium notatum (83.14 ± 0.97) at a 15% culture filtrate concentration with minimum inhibitory concentration (MIC) values of 230 µg/mL, 200 µg/mL and 190 µg/mL, respectively. Overall, the methanolic fractions showed significant biological potential, and its pure isolates might be used to construct a potential new medicinal source.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA