Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
JCI Insight ; 4(24)2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31852843

RESUMEN

Despite an unprecedented 2 decades of success, the combat against malaria - the mosquito-transmitted disease caused by Plasmodium parasites - is no longer progressing. Efforts toward eradication are threatened by the lack of an effective vaccine and a rise in antiparasite drug resistance. Alternative approaches are urgently needed. Repurposing of available, approved drugs with distinct modes of action are being considered as viable and immediate adjuncts to standard antimicrobial treatment. Such strategies may be well suited to the obligatory and clinically silent first phase of Plasmodium infection, where massive parasite replication occurs within hepatocytes in the liver. Here, we report that the widely used antidiabetic drug, metformin, impairs parasite liver stage development of both rodent-infecting Plasmodium berghei and human-infecting P. falciparum parasites. Prophylactic treatment with metformin curtails parasite intracellular growth in vitro. An additional effect was observed in mice with a decrease in the numbers of infected hepatocytes. Moreover, metformin provided in combination with conventional liver- or blood-acting antimalarial drugs further reduced the total burden of P. berghei infection and substantially lessened disease severity in mice. Together, our findings indicate that repurposing of metformin in a prophylactic regimen could be considered for malaria chemoprevention.


Asunto(s)
Antimaláricos/farmacología , Malaria/prevención & control , Metformina/farmacología , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Animales , Antimaláricos/uso terapéutico , Células Cultivadas , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Quimioterapia Combinada/métodos , Hepatocitos , Humanos , Concentración 50 Inhibidora , Hígado/citología , Hígado/efectos de los fármacos , Hígado/parasitología , Malaria/sangre , Malaria/tratamiento farmacológico , Malaria/parasitología , Masculino , Mefloquina/farmacología , Mefloquina/uso terapéutico , Metformina/uso terapéutico , Ratones , Carga de Parásitos , Pruebas de Sensibilidad Parasitaria , Plasmodium berghei/aislamiento & purificación , Plasmodium falciparum/aislamiento & purificación , Primaquina/farmacología , Primaquina/uso terapéutico , Cultivo Primario de Células
2.
Sci Transl Med ; 7(296): 296ra111, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26180101

RESUMEN

Malaria is one of the most significant causes of childhood mortality, but disease control efforts are threatened by resistance of the Plasmodium parasite to current therapies. Continued progress in combating malaria requires development of new, easy to administer drug combinations with broad-ranging activity against all manifestations of the disease. DSM265, a triazolopyrimidine-based inhibitor of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase (DHODH), is the first DHODH inhibitor to reach clinical development for treatment of malaria. We describe studies profiling the biological activity, pharmacological and pharmacokinetic properties, and safety of DSM265, which supported its advancement to human trials. DSM265 is highly selective toward DHODH of the malaria parasite Plasmodium, efficacious against both blood and liver stages of P. falciparum, and active against drug-resistant parasite isolates. Favorable pharmacokinetic properties of DSM265 are predicted to provide therapeutic concentrations for more than 8 days after a single oral dose in the range of 200 to 400 mg. DSM265 was well tolerated in repeat-dose and cardiovascular safety studies in mice and dogs, was not mutagenic, and was inactive against panels of human enzymes/receptors. The excellent safety profile, blood- and liver-stage activity, and predicted long half-life in humans position DSM265 as a new potential drug combination partner for either single-dose treatment or once-weekly chemoprevention. DSM265 has advantages over current treatment options that are dosed daily or are inactive against the parasite liver stage.


Asunto(s)
Antimaláricos/química , Inhibidores Enzimáticos/química , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Pirimidinas/química , Triazoles/química , Administración Oral , Animales , Antimaláricos/farmacocinética , Área Bajo la Curva , Células CACO-2 , Cristalografía por Rayos X , Dihidroorotato Deshidrogenasa , Perros , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacocinética , Haplorrinos , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos NOD , Ratones SCID , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Plasmodium falciparum , Pirimidinas/farmacocinética , Conejos , Especificidad por Sustrato , Triazoles/farmacocinética
3.
Cancer Res ; 75(16): 3255-67, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26122846

RESUMEN

The delivery of diagnostic and therapeutic agents to solid tumors is limited by physical transport barriers within tumors, and such restrictions directly contribute to decreased therapeutic efficacy and the emergence of drug resistance. Nanomaterials designed to perturb the local tumor environment with precise spatiotemporal control have demonstrated potential to enhance drug delivery in preclinical models. Here, we investigated the ability of one class of heat-generating nanomaterials called plasmonic nanoantennae to enhance tumor transport in a xenograft model of ovarian cancer. We observed a temperature-dependent increase in the transport of diagnostic nanoparticles into tumors. However, a transient, reversible reduction in this enhanced transport was seen upon reexposure to heating, consistent with the development of vascular thermotolerance. Harnessing these observations, we designed an improved treatment protocol combining plasmonic nanoantennae with diffusion-limited chemotherapies. Using a microfluidic endothelial model and genetic tools to inhibit the heat-shock response, we found that the ability of thermal preconditioning to limit heat-induced cytoskeletal disruption is an important component of vascular thermotolerance. This work, therefore, highlights the clinical relevance of cellular adaptations to nanomaterials and identifies molecular pathways whose modulation could improve the exposure of tumors to therapeutic agents.


Asunto(s)
Adaptación Fisiológica , Endotelio Vascular/metabolismo , Calor , Nanopartículas/metabolismo , Neoplasias Ováricas/metabolismo , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Células Cultivadas , Doxorrubicina/administración & dosificación , Doxorrubicina/metabolismo , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Femenino , Humanos , Hipertermia Inducida , Estimación de Kaplan-Meier , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Desnudos , Ratones SCID , Ratones Transgénicos , Nanopartículas/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/fisiopatología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
4.
ACS Nano ; 7(9): 8089-97, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-23961973

RESUMEN

Plasmonic nanomaterials including gold nanorods are effective agents for inducing heating in tumors. Because near-infrared (NIR) light has traditionally been delivered using extracorporeal sources, most applications of plasmonic photothermal therapy have focused on isolated subcutaneous tumors. For more complex models of disease such as advanced ovarian cancer, one of the primary barriers to gold nanorod-based strategies is the adequate delivery of NIR light to tumors located at varying depths within the body. To address this limitation, a series of implanted NIR illumination sources are described for the specific heating of gold nanorod-containing tissues. Through computational modeling and ex vivo studies, a candidate device is identified and validated in a model of orthotopic ovarian cancer. As the therapeutic, imaging, and diagnostic applications of plasmonic nanomaterials progress, effective methods for NIR light delivery to challenging anatomical regions will complement ongoing efforts to advance plasmonic photothermal therapy toward clinical use.


Asunto(s)
Oro/uso terapéutico , Hipertermia Inducida/instrumentación , Nanopartículas del Metal/uso terapéutico , Neoplasias Ováricas/patología , Neoplasias Ováricas/terapia , Fototerapia/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Animales , Línea Celular Tumoral , Diseño de Equipo , Análisis de Falla de Equipo , Femenino , Humanos , Hipertermia Inducida/métodos , Rayos Infrarrojos/uso terapéutico , Ratones , Fototerapia/métodos , Prótesis e Implantes , Resonancia por Plasmón de Superficie/métodos , Resultado del Tratamiento
5.
Cell Host Microbe ; 14(1): 104-15, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23870318

RESUMEN

The Plasmodium liver stage is an attractive target for the development of antimalarial drugs and vaccines, as it provides an opportunity to interrupt the life cycle of the parasite at a critical early stage. However, targeting the liver stage has been difficult. Undoubtedly, a major barrier has been the lack of robust, reliable, and reproducible in vitro liver-stage cultures. Here, we establish the liver stages for both Plasmodium falciparum and Plasmodium vivax in a microscale human liver platform composed of cryopreserved, micropatterned human primary hepatocytes surrounded by supportive stromal cells. Using this system, we have successfully recapitulated the full liver stage of P. falciparum, including the release of infected merozoites and infection of overlaid erythrocytes, as well as the establishment of small forms in late liver stages of P. vivax. Finally, we validate the potential of this platform as a tool for medium-throughput antimalarial drug screening and vaccine development.


Asunto(s)
Hepatocitos/parasitología , Hígado/citología , Malaria/parasitología , Parasitología/métodos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium vivax/crecimiento & desarrollo , Animales , Antimaláricos/farmacología , Células Cultivadas , Evaluación Preclínica de Medicamentos , Hepatocitos/citología , Humanos , Estadios del Ciclo de Vida , Hígado/parasitología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos
6.
Cancer Res ; 69(9): 3892-900, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19366797

RESUMEN

Plasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glycol (PEG)-protected gold nanorods (NR) that exhibit superior spectral bandwidth, photothermal heat generation per gram of gold, and circulation half-life in vivo (t(1/2), approximately 17 hours) compared with the prototypical tunable plasmonic particles, gold nanoshells, as well as approximately 2-fold higher X-ray absorption than a clinical iodine contrast agent. After intratumoral or i.v. administration, we fuse PEG-NR biodistribution data derived via noninvasive X-ray computed tomography or ex vivo spectrometry, respectively, with four-dimensional computational heat transport modeling to predict photothermal heating during irradiation. In computationally driven pilot therapeutic studies, we show that a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice. These studies highlight the potential of integrating computational therapy design with nanotherapeutic development for ultraselective tumor ablation.


Asunto(s)
Neoplasias de la Mama/terapia , Hipertermia Inducida/instrumentación , Nanopartículas del Metal/química , Nanotubos/química , Polietilenglicoles/química , Animales , Línea Celular Tumoral , Oro/administración & dosificación , Oro/química , Oro/farmacocinética , Humanos , Hipertermia Inducida/métodos , Ratones , Ratones Desnudos , Polietilenglicoles/administración & dosificación , Polietilenglicoles/farmacocinética , Espectroscopía Infrarroja Corta , Resonancia por Plasmón de Superficie , Distribución Tisular , Tomografía Computarizada por Rayos X , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Am Chem Soc ; 128(24): 7938-46, 2006 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-16771508

RESUMEN

This paper describes a method for local heating of discrete microliter-scale liquid droplets. The droplets are covered with magnetic porous Si microparticles, and heating is achieved by application of an external alternating electromagnetic field. The magnetic porous Si microparticles consist of two layers. The top layer contains a photonic code and it is hydrophobic, with surface-grafted dodecyl moieties. The bottom layer consists of a hydrophilic silicon oxide host layer that is infused with Fe3O4 nanoparticles. The amphiphilic microparticles spontaneously align at the interface of a water droplet immersed in mineral oil, allowing manipulation of the droplets by application of a magnetic field. Application of an oscillating magnetic field (338 kHz, 18 A rms current in a coil surrounding the experiment) generates heat in the superparamagnetic particles that can raise the temperature of the enclosed water droplet to >80 degrees C within 5 min. A simple microfluidics application is demonstrated: combining complementary DNA strands contained in separate droplets and then thermally inducing dehybridization of the conjugate. The complementary oligonucleotides were conjugated with the cyanine dye fluorophores Cy3 and Cy5 to quantify the melting/rebinding reaction by fluorescence resonance energy transfer (FRET). The magnetic porous Si microparticles were prepared as photonic crystals, containing spectral codes that allowed the identification of the droplets by reflectivity spectroscopy. The technique demonstrates the feasibility of tagging, manipulating, and heating small volumes of liquids without the use of conventional microfluidic channel and heating systems.


Asunto(s)
Cristalización/métodos , Magnetismo/instrumentación , Microfluídica/métodos , Nanoestructuras/química , Silicio/química , ADN/química , Campos Electromagnéticos , Compuestos Férricos/química , Transferencia Resonante de Energía de Fluorescencia , Calefacción , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Fotones , Porosidad , Propiedades de Superficie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA