Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
3 Biotech ; 10(11): 477, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33088670

RESUMEN

Advancement in nanotechnology has improved ways for large-scale production and characterization of nanoparticles of physiologically important metals. The current study explores the impact of Zinc Oxide Nanoparticles (ZnO-NP) and Chitosan-Zinc oxide nano-bioformulation (CH-ZnO) in tissue culture raised callus of Nicotiana benthamiana. Results indicated augmented biomass in CH-ZnO treated callus, while a reduced biomass was observed in ZnO-NP treated callus, at all the concentrations tested. Higher chlorophyll and carotenoid content were recorded in callus treated with 800 ppm CH-ZnO as compared to ZnO-NP treated callus. A higher accumulation of proline was observed in CH-ZnO treated callus when compared to ZnO-NP treatment, which was significantly higher at 50, 200 and 400 ppm CH-ZnO treatment. A maximum reduction in malondialdehyde (MDA) content was recorded at 800 ppm, for both the nano-formulations tested. Likewise, a significant reduction in the H2O2 levels was observed in all the treatments, while the callus treated with 400 ppm ZnO-NP and 800 ppm CH-ZnO recorded the highest reduction. Phenylalanine Ammonia-Lyase (PAL), activity increased significantly in callus treated with 400 ppm concentration for both ZnO-NP and CH-ZnO with respect to control. An increased level of tannin and nicotine were recorded in callus supplemented with 50, 200 and 400 ppm CH-ZnO. Notably, a significant decline of 94 and 52% in tannin content and 25 and 50% in nicotine content was recorded in the callus treated with 800 ppm CH-ZnO and ZnO-NP, respectively. The findings of this study suggest that an optimized dosage of these nano-bioformulations could be utilized to regulate the nicotine content and stress tolerance level.

2.
PLoS One ; 12(11): e0187793, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176870

RESUMEN

Ascorbic acid is a ubiquitous water soluble antioxidant that plays a critical role in plant growth and environmental stress tolerance. It acts as a free radical scavenger as well as a source of reducing power for several cellular processes. Because of its pivotal role in regulating plant growth under optimal as well as sub-optimal conditions, it becomes obligatory for plants to maintain a pool of reduced ascorbic acid. Several cellular processes help in maintaining the reduced ascorbic acid pool, by regulating its synthesis and regeneration processes. Current study demonstrates that monodehydroascorbate reductase is an important enzyme responsible for maintaining the reduced ascorbate pool, by optimizing the recycling of oxidized ascorbate. Cloning and functional characterization of this important stress inducible gene is of great significance for its imperative use in plant stress management. Therefore, we have cloned and functionally validated the role of monodehydroascorbate reductase gene (mdar) from a drought tolerant variety of Eleusine coracana. The cloned Ecmdar gene comprises of 1437bp CDS, encoding a 478 amino acid long polypeptide. The active site analysis showed presence of conserved Tyr348 residue, facilitating the catalytic activity in electron transfer mechanism. qPCR expression profiling of Ecmdar under stress indicated that it is an early responsive gene. The analysis of Ecmdar overexpressing Arabidopsis transgenic lines suggests that monodehydroascorbate reductase acts as a key stress regulator by modulating the activity of antioxidant enzymes to strengthen the ROS scavenging ability and maintains ROS homeostasis. Thus, it is evident that Ecmdar is an important gene for cellular homeostasis and its over-expression could be successfully used to strengthen stress tolerance in crop plants.


Asunto(s)
Simulación por Computador , Eleusine/enzimología , Eleusine/genética , Genes de Plantas , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Secuencia de Bases , Dominio Catalítico , Clonación Molecular , Secuencia Conservada , ADN Complementario/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Anotación de Secuencia Molecular , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/aislamiento & purificación , Fenotipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Reproducibilidad de los Resultados , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA